Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Presence sheet 13 Mathematics for Machine Learning

Tutorial of Week 14 (27.01. - 31.01.2025)

Exercise 1 (Maximum Likelihood Estimator).

Suppose you toss a coin n = 10 times and get head for k = 7 times. Now you want to estimate the probability of "head" p.

- a) State the statistical model.
- b) Calculate the Maximum Likelihood Estimator \hat{p}_{MLE} .

Exercise 2 (Multiple choice questions).

For each of the following questions, choose exactly one answer.

- a) When testing the null hypothesis H_0 against H_1 , the p-value of an observation is
 - A. $P(H_0 \text{ is true})$
 - B. $1 P(H_1 \text{ is true})$

C. the smallest level of a test, which would reject H_0

b) Consider two different tests of level α with power functions $\beta_1(\theta) = \theta^5$ (Test 1) and $\beta_2(\theta) = \theta^3$ (Test 2) for $\theta \in \Theta_1 = [1/2, 1)$. Which test would you prefer?

A. Test 1 B. Test 2

- c) Which of the following (95%)-confidence intervals for a parameter $\theta \in \mathbb{R}$ would you prefer? A. $I_1 = [-2, 3]$ B. $I_2 = [-1, 0]$ C. $I_3 = [-1, 3]$ D. $I_4 = [-2, 0]$
- d) There always exists a test of level $\alpha = 0$.

A. True B. False

- e) A manufacturer claims that at least 99% of their produced cellphones are flawless. To test this statement, we observe independent samples x_1, \ldots, x_n from a Bernoulli distribution $Ber(\theta)$ for $\theta \in (0, 1)$, where $x_i = 1$ indicates that cellphone *i* is faulty and $x_i = 0$ indicates that it is flawless. How do we have to formulate a hypothesis test, if we want to control the error of wrongfully accusing the manufacturer of a false statement?
 - A. $H_0: \theta \ge 0.99$ and $H_1: \theta < 0.99$
 - B. $H_0: \theta < 0.99$ and $H_1: \theta \ge 0.99$
 - C. $H_0: \theta > 0.01$ and $H_1: \theta \le 0.01$
 - D. $H_0: \theta \le 0.01$ and $H_1: \theta > 0.01$

Exercise 3 (Hypothesis testing).

You are given a coin and want to find out if the coin is fair. In order to do so, you construct a hypothesis test with

$$H_0: p = 0.5$$

and $H_1: p \neq 0.5$.

Now you toss the coin n = 10 times and decide to reject H_0 if the number of heads is less than 3 or more than 7.

- a) Compute the probability of the Type-I-error assuming that the null hypothesis is true.
- b) Compute the probability of the Type-II-error if the true parameter is p = 0.7.