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Probability theory

Recommended text book

Jarod Potter Probability essentials

If you want to see all
themaths behind it I recommend

Shiryaer Probability
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Motivation

Given some set X want to measure the size of refs

define notion of a volume eg to define
the Lebesgue integral

define notion of a probability of a set

Ideally would like
to assign a measure to each subset of X

the the measure might be a mapping

m P X 112

Je set all subsets

However for many domains including X IR this leads to mathematical

problems Need to restrict the set of measurable subsets



5 Algebra

Def X non empty set A strain is a

non empty collection F of subsets of X such that

i F is closed under taking complements

A E F XIA E F

ii F is closed under countable unions

An 121 G F Ai F
i 1

Iii X E F



Examples

Trival 6 algebras Given X we can define two pretty

useless 6 algebras

Fn 0
act at B

2
PCR a aap

A Bie

Given X let G be any
collection of subsets of X

the _nasenrahdbyG is the smallest o algebra F

such that G c F Notation o g

Remark Existence can be proved easily by an explicit

construction

6 g A Ʃ Ʃ is a 6 Algebra that containsG



Bard o algebra

Consider a metric space X d and let G be the collection of

open
subsets of X Then the B algbra is defined

as o g



 

Masurest



Measurable space

Def A measurable space consists of a set and

a 6 atoratovke Notation X F the

sets in F are called meable



Measure

Def Given a measurable space X F a measure

is a map µ
F 0 so such that

i N
0

i For any countable collection of disjoint
subsets Silien with Sie F we have

µ Yen Si E N Si

measure is a function on F not on X



Measure space

Def A measurable space X F endowed will a measureµ

is called a Ierpace X F p



Example Discrete measure

Given a finite of countable space

ie define the o algebrafto be

the set of all substs of X
Consider a sequence

milieu CRs such that I mi is finite
Example mi

Want to define µ F IR Proceed as follows

N xi mi define µ on all elementary sets

For all other sets A E F we can now deduce the

measure due to countability by

NCA Eta 114 3 mi



Lebesgue measure on IR

Consider the space IR with ite Bord r algebra the r algebra 8

induced by the open sets Ja b a b FIR a c b

To each such intuval assign the volume

Vol Ja b b a

Our can prove that this notion of
volume can be extended

to the whole 6 algebra 8 the resulting measure on 112,8

is called the Lebesgue measure and is often denoted with

the letter X



Lebesgue measure on Rd

Similarly to the 1 dim can one can also construct a

measure on IRA with the Bord o algebra 8

Consider sets of the form Janibal Jaribal Jag bd

and assign them the volume by an by age

Can whnd this consistently to the whole 5 algebra

multi dim Lebesgue measure to



A funny measure on IR

Let F be the Borel r Alabra
on IR Want to define a

measure that just assigns mass to rational
numbers

Let
yn

be all rational numbers Countably many

Consider milien as before mi

µ 9 31 mi

N aib Egg Mail Ʃ
siecas

MI

in Q

sum up our all the rational

points in the
interval

infinitelymanypoints



More general measures on IR

IR F Bord o algebra Let F IR IR

be monotonically increasing continuous

II

For an interval Ja b define ite measure as

N Ja b F b Ffa

Can prove that one can extend this measure to the

whole 0 algebra making it a well defined measure on IR



Measure with a density

Consider a function f IR 1120 that is integrable

For intuals a b deline

Mfir a b feel de

this can be extended to a proper measure
on R B

then r is the measure with density f with respect to the

Lebesgue measure

More keywords Radon Nikodym theorem



Carathéodory extension theorem

Have seen serval instances where we defined a measure on

innovate a b or Ja b or Ja b and concluded that it

extends to the whole 5 algebra

Mathematical basis for this approach
is the Caratheodory theorem

shipped here



Measure with continuous and discrete parts

Observe measures can
have continuousand disarch parts

Example If it is the Lebesgue measure on 0,1 with

Bord r algebra Let do be the discrete measure that assigns

mar 1 to the set 0

then we can define a measure v do

Dira measure
AC 0,1 A ACA do Al that it O A

la 1 if OEA

More keywords Lebesgue decomposition theorem of measures



Null sets

Consider a measure space X F p

A subset N E F is called a net if µ N 0

We say that a property holds almost everywhere if

it holds for all EX except for anuusetN

in probability theory we say Istsurely



Measurable mappings

Let X F p be a measure space and

and W it be a measurable space

A mapping f X W is called measurable if

AE it f A E F pre images of measurable sets

are measurable

The upping f induces a measure v on W et via

V A N f Al
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Probability measure it snis Csr
Reit

P it IR

A measure P on a measurable space r t is called

a p basitymeasure if PCR 1

The elements in it are called events

d d P is called a cabiltyspace



Example throw a die

1 1,2 6 it 5 R o algebra generated

by the elementary events 13 23 6

P can he be defined uniquely by assigning

P 11 P 523 P 63

For example P 1 53 P 113 P 53

firstdiesecondi me io in art art

A P R

fill P i j 316



Example normal distribution

or IR

A Borel o algebra

fair IR IR

n

p
apt

11TP it o n

P A I fraces dx

P is the probability measure on IR A with density trio



More examples

see late
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Let P be a prob measure on IR B R

Define the funtion F IR R P 0

we

IIIIIiiiaasonychon.cat
F



Cdf vs pdf

Example normal distribution
pdf prob density fat

f

l
im

E1iF

faamnnea



Properties of the cdf

A adf satisfies the following properties

i F is monotonically increasing with

Fat 0 and lie fats 1

Gi F is continuous from the right

Hulu sequence with tu x

i.e Xu Xuan and Xu x then also

Fctu Fox

The other way
round Is it true that a function that satisfies

i and Iii is always the adf of a prob measure Yes



Cdf gins rise to a unique prob measure

Icon
Let F IR IR be a function with properties

i and ii

Then there exist a unique prob measure P
on IR B IR

such that P 0 F x
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Random variable

Def Let R it PI be a probability space I F be

another measurable space A mapping X R I

is called a random variable if X is measurable i e

At it X I w E R a A e t

people in the height
world

persons thatare A at least 170

A
at least 170cm
tall

P A 0.1



Example

Example sum at two dice

i j ije5n 63 5 92 12

w̅ P T
it PCR

P ci it

sum of the two values

X R 2 12 i j in it

Is measurable

ñ

P sum 121 P i ill it 12 P 0,613



Distribution of a V

Def A random variable X Rit P IT It induces a measure

on the target space

For A e if we deline

P I P X E

This is a probability measure on 5 if and it is

called the distribution



Induced 0 algebra
it P1 CS T X It 5

Def X R it P 5 it Then the family

6 x A I F E F

is a 6 algebra on and it is called Ibarra

induced by X

Tristesmallest 6 algebra on so that makes measurable

F wer CHEF
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Expectation finikay

Consider a finite random variable X R IR

that is S2 is finite

Definition r ut P prob space S C R finite

I S random variable Then

E x E r P X r is called the expectation of X

sometimespeople write EX IEX or E x

A ru is called centered if E 1 1 0



Examples

Toss a coin R head tail it PCR P head p

p tail 1 p O p 1

I 0.1 head 1 tail to 0

ECKI O
Pfg 1.151 p

In ML

Train error upend error wut empirical distribution which assigns

prob to all the n training points

Test error of a classifier upechel error wrt to the unknown

underlying date dichibution



Expectation is linear
discrete

Prof Let 4,4 R M P IR be horrendous variables Then

E a b F a E X b E Y

2

t Elatta Carnaby P tie 4

case a x P Xx Y y b y Plter
Y y

a fi ied ebs I

lawof a x P text b P 4 y a E XI b E 4 go

totalprob



 

fepretationofafgeneral rv



Motivation

Let 12 it P be a measure space and X S IR a vv

Want to define E x x dp

If P has a probability density p and X R IR we might

do something similar as the Riemann integral

Elt Ai P Ai

IIII

i
p x dx



Motivation

Consider a probability space s t P and a measurable

function f X IR Want to compute fee dP

the integral of the function wit probability mean P

he case I o n with the uniform distribution this is easy

it is the same as computing the normal integral

Intuitively are partition the space R R

p
f

in at A him to and compute

the approximate integral

on'an fi Is
flail And Ai

Then we let n 1 and hopefully courage

to offal dx



Now consider a can of 2 with a prob distribution will density p

f

fmf

we now want to parae a similar approach

But instead of using the length of Ai

as volume we now want to use the

probability of Ai as notion of volume
I

a an fi for a

E frail Ai

weightby
P til Then we let u so and hopefully couna

to
fix pin dx

in

weightby the prob density



But what do we do if we don't have a density p Or a more

general input space R

We cannot describe the weight by a function p so we need

a more general construction

As it will turn out we will turn this process upside down

lushed of starting with a partition of the input space R

and relining it which might be difficult because I does not have

any
structure beyond a 0 algebra we use a partition of

the target space IR



Construction of an integral simple vv

Shp1 Assume the random variable X RT IR only takes

lininity many values a fan an that is

Men exist some sets An An each that
r

an

pea
it weti the ai 11 14 a

0 otherwise a a

Noh that because X is a rr the sets A need to be fit

We call such a vv simple We now deline

k

E X E a P Ai

I Noh that this coincides with the previous def in the discrete care



93

az

an
kit

together these two intervals

are the set An



Construction of an integral non negative or

Steph Assume the or takes values in o We define

E X sup E 14 4 simple uv with 0 4

Y X

we r Y w Xcw

If the supremum exists and is finite we call the resulting

number the epectation E t of the non neg or X



intuitively

we disiratize the output of the ru into finitely many values

we look at the sore partitions An An of the intent space R

we use these partitions to approximate X from below

By taking the supremum on all such partitions we implicitly

un line and line partitions without the eplicit need to

define what elinements of partitions are



Illustration of Ship 2

Consider the can of a un f 112 IR

IR IR

4ft j fffff
fÉF

fffÉfÉimap

the rv I

A fat 42 Yul approximation of f
based on the partition
inducedby the output space



Construction of an integral general case

Shp1 let x be a general ru A R 1 IR

Deline X met 0 and X min 03

f ft Then X_ and both t and t or

non negative vus

Now assume that both X and han linin expectations

Then we define

E X E Xt E X

Notation EX SX in drew X dp



Important properties of the epistation

we introduce the notation L 12 I PI to devoh all

random variables for which a linin expectation exists

Consider two vus X Y or N such that X w 4 w Hw

and X Y E U Mm EFT L E Y

E L R M P It f L or.it P

In this case EIX E 1 11

Any bounded vv possesses an expertation

X bounded Kwer Xcw c for some
CEIR

possess an expectation have a well defined linite E X



X Y a s EM E Y

Recall 4 a s ES N e with PIN O

said that to SIN

Iw Y a

functions agree everywhere except on a set ofmeasure 0

In
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Unions and intersections

Notation

P An B P A and B
1

AnB

P AUB P A or B



Conditional probability

Def R it P probability space

A B e it P B 0 Then

P A B
P ᵗL is called the

audi alpobabilityof A given B



Example with two dice

P sum is 10 first die is 5

an
127456 127456 121456 1274516

127456

PCsumi to and finudie is 51



P sum is 10 first die is 5

i
iiiii.is

Makes once when we know the first die is 5 then

the second one has to be 5 as well to achieve

sum 10 which happens will 16 prob



Note of course the ordering matters

I all persons on earth a finite set

it P r

P uniform

Event A person has been vaccinated

B person has disease

in different conditional distributions

P disease vaccinated

P vaccinated disease

not the same



Conditional distribution positive condition

theory Let B e it with PCBI so

The mapping Pp it 0,1 A P AIB is a

probability measure on r t it is called the conditional

Eun of P with respect to B

B is fixed P AIB as a fat of A



Regular conditional distribution

in the definition of the soud distribution we require PCB 70

But

In Ml we often want to condition on events with probability 0

p y n Id
training pt X drawn from normal distribution

Under certain assumptions the resulting conditional distribution

exists and well defined needs heavywaths In ML in an

typically take the assumptions for granted see later
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Law of total probability

Let Br B2 Bu be a disjoint partition of R

with J it PIP SO foralli and Aect Then

p A PCA Bi P Bi P An Bi
in

soccer

sunny rainy



Bayes formula
Let Br B2 Bu be a disjoint partition of R

with J it foralli and Aect with P AIFO

P Bila fd 1 1 1 11



Example breast cancer screening

Assume 1 of all women
above 40 have breast cancer

90 of women with breast cancer
will be koht positive trueposition

8 of women without
breast cancer will receive a positive

result as well false positives

Given that a woman receives a positive test result what is

the likelihood that she has breast cancer

pcaanertr.int iiIiEiii n tT

or
10
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two independent events

Def Consider a probability space 2 at P Two events

A B E it are called incident if
P An B PCA PCB

Notation A 1 B

Observation A is independentof B P A B PCA



Many independent events

Def A talents Ailie is caldeendent

if for all finite subats J c I we have

P Ai PCAi

Family is called pairwise independent if i j EI

P Aina P Ai P Aj This does not

imply independence



Independent random variables

Def
Two random variables X R R Y R R2

are caltedindpnden.tt if their induced G algebras x 6 a

are independent
AGO X Bar Y P An B PCA P B

Notation X 1 Y



Expectation of independent product

Prof Let 4,4 R M P IR be two random variables Then

X Y independent E X Y E X E 4

Ʃ tix P X xi Ysy
d

he play

Ex P tail yjP 4 4



 

fvarianceandsovariance.fr



Variance standard deviation

Def X Y R it P IR rvs with

E X2 D E 42 0

Then
var x E X ECK

is called the variance of X

and re in

is called the standard

deviation
high variance
moderate variance



Covariance Correlation

Def
Cor X Y E X ECK Y ECK is called

the covariance of X and Y

Sey is

y
e E 1,13 is called the

correlation coefficient

If Cov X Y 0 then X and Y are called uncorrelated



Intuition about covariance

Cov X Y E x Ecm Y ECK

1gutf il positive large covariance

g 0.9
shoe size

demand

iq.gg negatin cow

loverin absolute values

g 0.9
Trice



Intuition about cov

Y

L i ii f
I

iiii
Cov 0

independenceuncorrelated

not independent

uncorrelated independence



Properties of var and cov

Var x E x2 x1

Cov X Y E x.Y E X E Y

E at b a E X b

Var a b a Var X

Cov X 4 Cor Y X

Var X 4 Var X Var 4 2Cov X Y

X 4 independent Cov 1,4 0

14 independent Var 4 Vault Var Y



K the moment

Lk R G P X R R measurable and VIX dp 0
r

If et R it P then

E X IP is called the 4th moment of X and

E X ECK the lith centered moment
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Cauchy Schwartz inequality

Ipositions x y e L R A P Then

E X Y ECX E K2



Markov inequality

O f o o
Prof

f monotonically increasing
Then

P 14 e

In particular

P IY e



Proof

To Do add on slides



Chebyshev inequality

Ecton E O Xe L R H P then

P IX ECN E
V

ueyquaityinlean.grtheory



Proof

To Do add on slides
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Discrete measure

a x1 x2 finite or at most countable

it PCR
We define a probability measure P it 0,1 by

assigning probabilities to the elementary events

p Exi pi

with pier pi 1

For A ect we assign

P A Erica Pi

Examples toss a coin distribution on Q



Dirac measure

For xe IR we define the iracmeIsured on

IR BCR by setting

A
if et

0 merwise

I
sometimes this is called a pointmass

at a point x

A discrete measure on R can be written as a sum of

Dirac measures For example throwing a die can be described

as da dz dg



Measures with a density

Consider IR BCIR and the Lebesgue measure 1

Consider a function f IR IRzo that is measurable

and satisfies fdd 1 Ifcade
Then we define a measure on IR

by setting for all At it

A effende
11T

v is the probability measure on IR BCR I with density f
Notation r f A
Question Can we describe every prob measure on 112 DCR

in terms of a density Answer no

Counterexample do Dirac measure



absolutely continuous measures

Def A prob measure r on 112 BCR is called

Euklyctinuous with respect to another measure on R BCR

if every µ null
set is also a v nullset

B E BCR N
B 0 r B1 0

Notation VCC N

11

rato
If



Examples

Example NCO 1 1

Example do 1 because

031 0 but do 037 1



ymT.in tt caocan a me

following two statements are equivalent

yjyryyggypppg.gr



IIIa can

2 a we need to construct a density

Consider the set G of all functions g with the following

properties

g i measurable 9 0

g in
that is

A BCR gdp V A

Observe g O satisfies A so G is not empty

If g h both satisfy x then sup g h satisfies 1

Deline g sup
gag

9 dp and construct a

sequence guluen such that him Vgnde p



9 9 new Vgnde r

Deline density f sup gu

a Now prove f does the job an

Def p r measurson R t r is calledsingular

wrt µ if there exists A eat such that

NCAI 0 but v AC 0 Notation N v

In air
Example A do



Lebesgue decomposition

TheoremCDecompositionbylebesgues

N N prob measures on
R Al then there exists a unique

anninn
minant

V K N and v2 µ

Example v 10,1 do

1h
V Vat v2 where re No 1 V2 do



Proof

Proof Let N be the setof all null sets wrtµ C it

α sup r A 1 At Nn

Can construct a countable sequence An new AnEW

such that An α By countable additivityno

weset Eff
Deline v A v An NC

V2 A An N

Don the job Da



Cantor distribution non trivial distribution that

is singular wrt 1

Construct the Cantor set

Start with Co 0,1 11 1
Remove middle part

Cn 0 v 23 1 Th th

Remove middlepartsfrom all
intuvals

C2 H H H H

the Cantor set is the limit in thisprocess
It is

compact non empty empty interior



Now construct a probability distribution

Consider the calls of the sets Co Cr Cz

uniform on 0,1C

Cn is miterm on 0,130 1

2

If take limit and
call the insulting measure g



Properties

the cdf of f is continuous

p is a prob measure

1 c 0

I p
Lebesgue
meason
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probability distributions



Uniform distribution

Uniform distr on 1 u P i 1

Uniform distribution on 0,1 distribution with

constant density

if

Uniform distr on 0.1
d

ns independence



Binomial distribution

on 0 n

Times
independently each timewith

probability p of observing head
Denote head 1 tail 0

heads

P X k is ph n p
ʰ



Poisson distribution

Poisson distribution on IN

Parameto 1 0

P t.nl If
Intuition number of incoming calls at a hotline



Normal distribution on IR

Density parameter µ mean 6 std deviation

facts apt

t.tt

Notation N p 62



A rule of thumb

95

t.it

36 26 6 6 26

The area under the normal densities 5 6 70

20,207 55

30 30 m 99



Sum of independent normals is normal

Prof X NN yn on 4 N
pa

622 14

Then Y N ly Nz on 62

Proof It is elementary to see that the mean of

4 is path and the variance is 6,2 6

However it is not trivial to prove that the resulting

distribution is again normal the standard approach

require convolutions and lorectrictis fats Shipped



Multivariate normal distribution

is a Ei pie Ectil n f
I E IR with Ʃ Cov ti t called covariancematrix

free p.fr gprap
1cenitEct n

Notation N µ Ʃ



the covariance matrix is psd

Prof Let C be the covariance matrix of any set of
random variables i t Cov tilt Then

C is symmetric and positive semi deluits

Proof Is it clear because Coo titi Gu t itil

psd need to prove that tan an ER

4

at ca If aia Ci 20



A

atCa aia Ci let Eta
martsofwestation

aia Eki nil ki nil

E aia Hi willy nil

E E ef
to

l



PCA Contour lines

Because Ʃ is symmetric and pad it has real valued

eigenvalues 20

The contour lines of a multivariate normal are ellipses

Contour line set 1 far in c

to.o set c f n ᵗƩ n E

Tem



geiprestors
of Ʃ

014 1



Marginal distributions of Gaussian are Gaussian

Marginal distribution

of

Marginal distribution

of y

Figmcredit NileLehmann



Conditional distributions of Gaussian are Gauseians

conditional

p y 4

conditional

p ly 0.7

1 I

Figurecredit NileLehmann



Mixture of Gaussians

Consider mixing weights an an e 0,13 sit Enai 1

Fix Ns Nn and Es Er Define the new

density
f ext aifri.si l

this is called a mixture of Gaustious



Examples of distributions with infinity expectation

Cauchy distribution on IRwith density fit r A f

Power law distributions on IR a family of distributions that satisfies

P X 1 c
paramen

If 2 3 no variance exists

If a 2 no mean exists

ML keyword preferential attachment model for social networks



Heavy tailed vs sub Gaussian distributions

Tail behavior of a Gaussian

P exist 2 up 32

Heavy nailed distributions are the ones where P If t is larger

than for a gaussian

Sub Gaussian
Smaller

Sub Gaussian rvs are particularly popular in learning theory
because

they exhibit strong concentration m see late
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Almost sure courgence

Consider ru Xi s R it N X S IR

or it P a probability space

Kilian courges to X almostsurely

P wer him Xicw cw 1
i o

Notation X X a s

Let us check that this definition is well defined
We need to

prove
that the event wer him Xicw w

i o

is an element in it



Well defined

Prof well µg tiew
sw Eat

E

Proof him Xicw X w

Tetch
he N IN EN Ku N Xuan Xa C

So weget

w tical can

In Y.nu nlw kncws task eat

Tutableunious
Xremeaswable J

and intersections
Xu XI is measurable

so it



Counance in probability

Def tilitin courses to X in obability

O P were ltical tail e 0

Stronger or weaker than almost surely



Convergence in Lp

Df Xu X in LP in the p
th mean

to it ELP and UX Up 0



Weak courgence

Def Let M1 112 be the set of all probability measures on

IR BCR Assume Hulu C M IR N E M 12

Cy 112 space of bounded continuous functions

Nn µ weakly

f Cock If dyn If du

in In
weak course is defined

for measures not for us Img Inf



Excusion weak courgence in functional analysis

Texcursion

In functional analysis a sequence tu in a

Banach space B courum weakly if for all

bounded lin functionals f we have that

fetal text i e for all fe B

Space M IR itself is not a Banach space

but C M IR space of all bounded measures

The dual space of M CR is Cb IR

Thus the weak loungence defined above coincides

with the notion of weak sour on M 112

L



Convergence in distribution

Def Xi X A A P R The sequence tu

converges in distribution to X

the distributions Px courage to Px weakly



Relationship between notions of convergence

we have the following implications and none of the missing directions

holds in general

in L in LPalmost surely
pse

I
in probability

in distribution



Example courogence a s in prob but not in C

Consider a 1 with the uniform distribution

Deline Xn IR R tacos
h for Osx

0 otwwise

area

7

x 0 t.cn 0

Can formally see to very a s in prob

But no courgence in L1



Example counguce in prob in but not a s

sliding blocks of smaller
and smaller volume

fr coin

fr 0,12
13 12,1

Eat
fu o fs f6 2,1

LE EL



Example Cour in distribution but not in prob

Xu a 13 IR Vi tim Ago
E

we 1

X 1,1

Obviously Xu X in prob but

Pt do In Px Pt i Px

so Xn X in distribution



 

theormol
Bord Cantilli



Definition An infinitely often

r it PI prob space An sequence of events in it

P An infinitely often P An i o

P wer we An for infinitely many u



Almost sure convergence E infinitely often

Propositions Xu t v.v on A A P

Xn x a s

0 P Itu x c inf often 0



Proof intuition

k Itu X1 at most finitely often

Ten lta t at most fin often

Yen In t inf often

complement



Borl Santilli

theory Consider a sequence of events Au c it

1 If In Plan 400 then P An i o 0

faa.gro.aaaamanummJ
then P An i o 1



Proof

To Do Pros ess



Application in learning theory

Assume that P Itu 1 1 C on and

assume that in o Then you can use

Borel Cantilli to prove that

P In x i o O

Mus Xu X a s



 

fthelawoflagenumberstLLN



iid

is an abbreviation for

Independent and identically distributed

A sequence Ku new of run
is iid if they are independent

and if they all follow
the same distribution

Being iid is one of the
standard assumptions in learning theory



Strong vs weak

strong law convergence a s

Weak law courguce in probability



Weak law of large numbers

Theory Let Xi ien iid random variables with Var Xi 100

and Elt N Denoh Sn is 1 Efi Then

PC Sn N E

In particular I E ti x ̅ converges to 0 in probability

Cobar iid all Xi have the same mean and var



Proof
Whog assume µ 0 otherwise consider the centurd rue Xi n

the weak low then follow directly from me Chebyshev inequality

N O

P 1 Sn p
e P Is e Eff

Now exploit that E Si EC h Eti 1 E tix Id

t.EE Eis amvte
Plugging this in above immediately fires the desired result



Strong law of large numbers

Theorne let ftilien be iid vve Assume that

the mean µ E Xn 00

and var Xn 62 0 Then

n

him 1 En ti p
a s and in L

n 300



Strong law of large numbers

them let ftilien be iid random variables with Va still

and E til N then

I En ti µ
almost surely



Proof

We prove the theories
under a slightly stronger condition E X 0

Without loss of generality we assume that µ 0 otherwise we replace Xi

by Xi n

To simplify notation introduce Sn EI ti

General idea

want to apply Bord Cantelli to the events of the form

1 n on

Need to find events s th P on En

and Eo En 0

For these individual eventswe are going to use the Markov inequality



Proof

Proofships Under the given assumptions
there exists a

constant K 0 such that E Sn 4 km

Prof

E Sn E Eti
multiply out

eploit that all i have the same distribution

and that E til 0

n E X 3u a 1 E 2122

K m for some constant K



Rhp Markov inequality for function fett 4

For all v70

Elsa n't
I k.nl the

Proof chp 3 Bord Cantelli

some p e 30 and define the events

An isnt n
t

then Plant In k n o

Bord Cantilli P An i o 0 Thus high deviation can only

happen at most finitly other courface a s
e



Many more versions exist

There elist many many versions of the
LLN under all

kinds of assumptions

Let us try to get some intuition for what
it really needed



The conditions in this theorem

Independent the theorem doesnot hold if we allow for arbitrarydependencies

Example X Be fair coin

Xp xp Xn all other coins getthe

same result as the firstone

Han Xi are identically distributed with meann

It Sn
t.io

thin
heute

sa but not to Eftn

One can weaken independence a bit stationary sequences martingale dferries



The conditions in this theorem

d this condition is not really necessary
W.fm

mu a popular version of the theorem states that

the variance of all the Xi needs to be bounded by the

same constant View Varixil C

Bee In can where the tie are identically

distributed in do not need a bounded variance

Bondectation is obviously needed Revise an would not

even be able to state the result



Machine learning question

Consider a training set fxi.Yilien.in drawn iid NP

Consider a loss functive l and a classifier 4 that has been trained

on this data

The training error is defined as

Rn f 1 Ʃ l fail Yi

the test error is defined as

R f Ef fail Yil
Does the LLN now state that Rn R



 

Thecentrallimittheoreat
CLT



Central limit theorem

Mean

Xilien iid ru with mean µ variance 6 so

Consider the rr Sn En ti We normalize it to

n p which has mean 0 and
Yu SLT standard dev 11

then Yn Y in distribution where Y NCO 1



Illustration

Illustration Xi coin head 1 tail o

Sn Ʃ tie o n

history M
0 1 2 n



Many men versions

Also here many more versions

Independence is really important

We don't need identical distributions at all

Bounded variance help but can beweakened In the end

we need to establish conditions that assert that each individual ru

is neglible in the limit and does not dominate the resulting sum



 

fcoucentnationinequatiti.es



Mariana.ir i
uineeuati

i
Rd a large

want to project in It 1 small

if



First motivation

In ML we very often replace individual statistics by

Heir spectations eg it the training error

The LLN says that the mean converges to the epected value

But the speed of convergence can be really slow and also the

concentration inequalities tell us that with high probability an event

is very close to its mean

T



Hoefding inequality

1 eetdi.gl
t.in innit iepi nnt

that ti E Cai bi a s for ist u

Let Sai Xi E Xi Then for any 0

mnnn.my 1ieiftitt



Application of Hoefding LLN

Considerthe following variant of the LLN

tilian did ru a i b let have the same
distribution as the Xi

Then EE ti ECK a s

Now that we do not make any art or E X as in our earlier proof

of the LLN We now un Hoefding to prove it



Proof of the LLN with Heeffding

Shph Hoefding

Pl Ex EM t ep 1
P 1 Ex Ex C t

PCIE Xi EC x t epl 72
Combined we get

P 11 Ex E x t 2 apt 32

Now want to apply Borel Cantelli to get a s courance

Zn E ti



Plan EW t
n 0

Substitute r ep Etp e o n

observe exp Eat r

sum 2 or 2 0

Now Bord Cantilli gives almost sue couraguce On



Hoefding is tightwithout anther
assumptions

Hoefding is tight cannot be improved without

further assumptious
For fair coin tosses it is tight

But not tight if coin is biased as need other inequalities



Bernstein inequality

Xr to independent with 0 mean1 I
a Let o I Envar ti Then

a.mn
any

i



Concentration inequality for functionswith bounded diffences

Consider a function f IR IR or more generally

f X IR for some arbitrary space X

We say that f has
the bounded differences properly if

there exist constants on c such that

sup f ens et ti ni ti tie in tu

I
flea n tin ti tie in tall Ci

Example f n n tut ti and a tie b ki then

f satisfies with Ci b a



Theorem of McDiarmid

Them tn tu independent ru Xie Xi

f Xn Xn R function with bounded difference property

Then for any
70

P f tier ital E f trinita t

apt É



Applications

stability in ML

standard theoretical CS randomized algorithms 1g Johnson Linderstrans

largest eigenvalue of a random symmetric matrix

A IT I draw iid



 

shipped

ClivenhoCantillitheorent



www.I
Fcdf
Xn Xun F iid

Fu IR to.rs 1ft
Fuca Ex a

Now fix one particular 9 ER

FuCao Flao by the law of large numbers

Because Age is a Binomial rv with

p P tie a

So it is clear that Fu F pointwise i.e Kao

Now let's look at uniform courgence



theory in to miid random variables with cdf F

Let Fu be the empirical cdf induced by
the sample then

PC 1 Fuca Fail E f

8 utr up

In particular sup Fn Fl 0 a s

i e Fu F uniformly a s



Proof Oban LCN P Facao Fraol E 0

for any fixeddo

Problem need to look at

P
r
Fucal Fca E

difficult because IR is uncountable

If we take a supremum on a finite set

it is easier

aluil EPCYI.in

P 14117 of 1421 or or Ua E

E P luise



Trick of the proof count guy
to something linin

How could we achievethis true fat

IT

In
inducedby
given sample

Fu inducedby a

ghost sample

1 red green

red blue 2 green blue



Steph Symmetrization by ghost sample

Assume Xp Y F independently short sample

Denok by Fu the empirical cdf inducedby ghostsaple

Now it is easy to prove

P
sep

1 Eat Eat E

2 P sap Eca Earl E



Steph Want to split this in two turns

IFucal Fical t.IE Hicaz 1
Introduce Rademacher random variables on on

Gi fast oi 5111 1 2

Distribution of is the same as the dish of the following

11 i Hexisa stica



Now we leave

2 P syp
Fuca Fu call

2 P sap 1 1 20 Hia Hei a I E

2P

selfheal 28ha eal
obsure

P in v1 P 141 or v12

right side is necessary for left side

4 P cap 1 Ʃ sitteria 1



Steps Exploit finik structure

Fix the ya condition on to tu

We look at Hx a Irri
the rus

sa Agtusa for feed a can only

have net realizating

P sep 1 Erika.ca xe n.eu

sina.EE iiiEiE



s.EE iterating to

Ka

P Eko Axial a tu

2 apr

Combining everything gins
the theorem



 

1Productspacef
joint distributions



Product space joint distributions

Consider two measurable spaces Rn it Reitz

Deline the Espace r 22 it A2 with

R 22 wn wz weeks we the

Anoutz An Az Antti Azt A2

Consider two rvs Xn A d P rn it

X2 A A P R2 Az

Xa t2 A A P entre A Az

Xn.tlcan Ancal tacos

The distribution Pa gg
on Reese I Az is called

the j
dishibution of Xn andX2



Example in ML X Y where X is the inputdata 4 is

the label



Product measure

Ar ite Pr S2 H2 P2 two

define me ten Pr Pr on

the product space Rr 12 M Az as

P P A Az Pn An Pa Az



Product independence

Two rvs t.it are independent if and only if
iawhhm

P
n ez

Pr P2



 

IMarginaldistribution
e



Marginal distribution

Consider the joint distribution Penn of two rus

X Xn X2 The marginal distribution of X wrt Xn

is the original distribution of X1 on Dan Hel namely

Px Similarly for Px



Exampleinthediscrkca.si

Ynft.TT
tp2tps P Y yn

Y2ymPsIPutpstpo
P Y y

1 marginal distribution

P text wrt 4

marginal wrt



Marginal distributions in case of densities

1,4 r it P IR BCR Z X Y Assume

that the joint distribution of Z has a density f on IR

Then the following statements hold

1 Both X and Y have densities on R B R givenby
jointdensity

FX t f x y dy
sum on Y

fy cel I facade
2 X and Y are independent if

f x y feces fycyl a s



Special care marginalsof multivariate
normal distributions

2dim Consider a 2 dim normal rv with mean

i i or and con Ʃ

Then the marginal distribution of X wit Xn is again

a normal distribution with mean µ and var on

map.oHedirecting

marginalwrt

is normal



in 112 Group the variables

Engie
Rh

her
112ᵗʰ

n

Want to lookat the marginal of X wrt x ̅

i E mean ii fill it Ii
E fin

w̅
Now the marginal of X cort x ̅ is a normal distr on IRK

with mean Ñ and cov 211
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Conditional distributions in the discrete case

i.ua
probabilites PCA B

defined for events A B Ect and P B 20

Let X Y S A P IR be discrete vv ye IR such that

p Y y 0 Then we can define the conditional probability

measure Pyly A P KE A Y y

this is a probability measure



Conditional distributions in case of densities

Assume Z X Y has a joint density f IR IR

and marginal densities fx fy IR IR then the function

fxlkycni.fi y
is then also a density on IR called the conditional densityof

give Y y



General case not discrete no density

For general rv this is surprisingly complicated

regular conditional probabilities shipped



Example normal distributions

µ Yi
Ñ En En

Ʃ
en Eez

If Eu N n Ʃ
then the conditional distributions

of x ̅ E wrt it_ Ee is in by

N in Ee Ei x flP
X1 x

En En En Enz



Conditional densities

To Do add
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Conditional expectatio in the discreh case soud on event

Def discrete case X Y A d P IR

assume takes linihly countably many values

no to EIR 4 takes finitely countably many values

Yn Ym EIR always with a positive probability

Men we define the conditional epestations

4 Xii Ey
jen



Example
Examplee two dice X first one 4 second one independent

E sum n Ei i P sum i X e

rtk P Y b x n

n
ith P 4 k rtk f 4.5

4 1

So far we defined E Y X xi but other we want to

consider the function E Y X a This is a rv

E 41 1 R H P IR B Leads to the following



loud expectation wrt a rv

Def discrete case X Y as before Then the

conditional expectation is defined as follows

E YIX f X with

fee
E ut t if P tie so

arbitrary say 0
otherwise

E YIX is only defined a s



General case

Problem P X I might be 0 all of the time

Case of densities is hill straight forward



Case of joint densities

X Z I IR have a joint density fix z

Letg IR IR bounded set 4 g t Assume we

want to compute E Y IX E gfp x

Recall has density f its f c z dz

the conditional density of Z give X x is

fx 1 if fxcei.to

Now consider hatti

fgf Fx ca dz now define

ECY X h x



Idea for the more general case

Consider X continuous or

Y discrete vv Yn 45

Want to look at E X K

I

74 45

T B Bu Bs

want to define E X Y E x Y yi 1g a

But need tomake sure that it is measurableyik I



Coud elpectation on by

Def conditional expectation on L1

Consider vv X I Fo P R Xe L r Fo P

Let f be a sub 6 alebra of Fo Intuition Fo willbe

the o alg generated by the variable Y we want to condition on

We now define the cond up of X give F

E X F as any
Tandouvariadle Zhatsatisf.es

1 Z is measurable wrt F

21 For all Ae F we have

XdP Z AP
A



Existence of E X 14 is not clear a priori it needs

to be proved

E X Y E X K

y then ECKIY X a.se

X 1 Y ECXIY E X a s


