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Definition of a group

Def A set G of elements with an operation G G G
is called a group if the following properties hold

an Associativity Ka b c EG atb c a bec

92 Identity element Feed kg EG etg gee g
63 Inverse elements a E G F b G G atb bta e

The group is called a commutative group Abelian group if
we have additionally that

94 Ka be G atb bta



Examples of groups

IR t Rt am groups

IR_ is not a group

Sn I 1 in 1 n It is bijective

Sn Sn Sn if not i IT 52 i

Sn o is a group



Definition of a field

Def A set F with two operations F F F is

called a field if the following properties hold

F1 F t is a commutatin group with identity elemento

FZ F 0 is a commutative group with id.ee 1

F3 Distributivity a b c E F a btc a b a c



Examples of fields

IR

E t

n e 2 consider Zn 0,1 u 1

a tab atb mod n

a nb a b mod n

Then En tu n is a field if and only if
n is prime



 

homplenumbersff

2024 Nok I realized in hindsight that it would have
beengood

to one introduce complex numbers I now prepared few

slides but may an NI part of the exam



Motivation

In machine learning our data is often represented by

real numbers IR

In linear algebra however it often helps if we extend

the real numbers to complex numbers

We are not going to use a lot of maths of complex number

but at least need them to factorize polynomials

Her are the very basics



Quadratic equations on IR

Quadratic equation for given parameter a b c ER want

to find E IR that satisfies the quadratic equation

at be t c 0

In school you
learned the formula

the
_b

It was solutions in R if b has 20 otherwise it doesn't

Reevoying



Imagine

Imagine that FI exists give it a name i FT

for imaginary number

Def A comble number is a number of the form a bi

where a b E IR We call a the real part and b the

imaginary part of the
number Write C for the space of

all such numbers a ib a b e R

cue G is a field



Quadratic equations over

Consider the quadratic equation again a be c o

Observe that it now always has a solution in G

tn.biz
I

Can 1 b has 0 Men to E R as usual

Case 2 b has 20 Then can write

VIII FEET Ear
i r where r VkarTER



Fundamental theorem of algebra

theory
Consider a polynomial not a a t ant

where the ai can be real or complex numbers

If an o this is a polynomial of degree n

Any such polynomial has exactly roots pay rn E G

not necessarily disticit such that

dot an out a x pm x p pn



Outlook

Dealing with complex
numbers is a rich field in mathematics

but we will not touch it
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Definition of a vector space

Def Let F be a field with id elements 0 and 1 94
Tang

A vector space over the field F is a she set with a Tag
mapping Ver V vector additioni and a mapping

FxV V scalar multiplication such that

un V t is a commutative group

V2 Multiplicative identity v e V 1

3 Distribution properties aib E F u v e V

a at v1 a u a v

atb u a utb.us

Elements of V are called vectors elements of F are

called scalars



Examples of vector spaces

112 with the standard operatibus

Function spaces

IRX f X IR the spaceof all realvalued fats

on a set X Deline

IR R it f g x is far g x

IR IR IT e f x is fees

then IR is a real vector space

E X f X Rf f is continuous

Er a b f a b IR f is r times cout
differentiable



Subspaces

Def let V be a vector space U C V non emptyset

We call U a subspace of V if it is closed under linear

combinations 1 NEF u well lutn.ve U

Example E X is a subspace of 112K

The set S of symmetric matrices of size uxy

is a subspace of 112



 

IBasisanddimensiont



Linear combinations

Def V vector space our F an inn an EV ta thief

then tini is called a linearcombinable The set

of all lin
comb of us un is called the spay

linear hall of 41 run

Notation

span un gun tini tie F



Linear independence

Def A set of
vectors in in is called Eldest

if the following
holds

livi 0 th stu o

Examples The rectors f 123 are lin indy

The functions since and cos x are lin id

Any set of did vectors in IR is lin dependent

Any set that contains the 0 vector is not lin indep



Basis of a vector space

A subset B of a vectorspace V is called aPI
Hamel basis if

B1 Span B V

R2 B is lin independent

he canonicalbasis of
1123 is 8 8 9

Another basis of m is given by

i ci or 1



Reducing a set to a basis

TUhun.n.yunlspausaVSV.me esetf
roposfIjanyereducedtoabaisoI

diff d
aning



Proof sketch

If U is already lin independent done

If U is lin dependent

ty in not all 0 suite that Ʃ tilli 0

Pick some k with the 0 then

un En nun
Denote I U Un It is clear that span II span a

If it is not lin independent in repeat this process

until the remaining set is lin independent

Note that this will eventually be the case at latest if the set

only consists of one vector
my



Finik dim vector space

Def A vs is called linin dim if it has a finite basis

We need to do a bit more work to define the dim

of a VS

can you come up with an example of an infinite space



Extending a set to a basis

be a linin dim VS Then I can be eluded to a basis

É m

fun u we win Remove vectors from the end

until the remaining vectors are lin independent

remaining set spans

remaining set is linearly ind.by
construction

remaining set iontrains
U

m



Two finite bases have the same length

Corollary let V be a link dem US Then any two bases

of V have the same length
I
C

Proofshetc Let Sheba and fee be two bases n Em

can m.at

in aiiiie n.a
lin dependent S

find a vector bi such that bebin bi b.cl in ind

keep on applying this procedure add restore from C remove

vectors from B At the end this results in a set of n vectors

in Cin a animism By construction they are liu ind

and span V If now we had in u the the set

in can cannot be lie ind any more



Dimension of a vector space

Def the length of a basis of a finite dim US is

called the dice of V
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Linear mapping

Def let U V VS on F A mapping f U V is called

linear if u 42 U A E F

f u tu fount fear

f tan if un

the set of all linear mappings from U V is denoted L U V

If U V then we write L U

Examples T e a b R f offers de unhmation

D 1 a b 4 a b f f Differentiation



Def T E L U V Then heel of T nepace
is defined as

her T null t n e U Ta 0 C U

The range of T image of T is defined as

Tangect Tu new CV

am



Properties of kernel and range

Proposition
Ker T and range T are subspaces

T is injective net 0

T is surjective range T

Proof Exercise



Pre image

If V c V V any set The peimage of V is definedas

T v a EU Tu e v

P

f u
meof4mentc

Prof exercise



Fundamental theorem for linear wppings

nihtVbehih din WaayVs TeL y

Let uni n un be a basis of her t c

Let was win be a basis of range T C W

FÉ4 ÉÉiÑÑÉ1µ 1
V W



Proof of the theorem

EI.FI I
ty tms.tn

I In we 1m win

A T at m Tem

znt mZm



Tv T trait i tu em 0

theief
um ns.t.V flytnt tt main aunt Much

in Ent t tintin pen
t n t

Nu Un



I

II.in IIII ao
me when

II.tt y tntczntt ttmt zm

weaddsomething In that t.it tut em pntlunlt ifutlunYI.ae inwnee

waitin threeifje.nl
o

in wet dawn 0 th Am 0

ii it

Man e Nunn O by

ps Nn 0 because an an basis MBE



É É

oAT
three statements are equivalent

i T injective

i T surjective

ii T bijective

Proof Direct consequence of theorem can you seewhy Exercise

Does not hold in to dim spaces
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Matrices

A matrix is the following object

annt.TTY.ws
A ais

Ams mn



Matrices represent linear wps

Consider T E L V W v w finite dim

let uni un be a basis of V

wy win basis of W

If we know the results of applied to the basis restore vi

then we can express T Iv for arbitrary u

trust t turn arbitrary vector

T r T taunt tara

I T rel t tut un



For basis vector v we can express the image T Iv

in bas's wy Win

there exist coefficients an i amjs.to

tCrjl an wnt t9nwmf
we now stack these coefficients in a matrix called M T

matrix of mappingT
m rows Ann Aaj Anu

one foreach i
with respect to

basis vector
is the banes

V1 Vu of V
aw an an

Wy Win of W

all
n cols one for each

basis vector of



The result of T v can now be expressed by a matrix vector

multiplication

Ten Tlvil

Ʃ 1 Ei ai wi
i n

E
in

iit we

T.fi i th entry of product
of matrix A with
vector 1



Notation for matrices of
linear maps

Notations let T V W be linear let 8 a basisof V

C basis of W We denote by

M T B C

the matrix corresponding to T wrt bases Band C



Properties of matrices

V W vector spaces consider the basis fixed Let S T e L v w

then

M s T H S M T

M S MCS

T U V S W linear then

M SOT M s MCT



Matrix transpose

Def Given a matrix A ais e Emen the

transpose matrix is given as

Atl Ajn

Notation At A

If F C then the conjugattrangel man is

defined as

A Tji



 

Sum of vector spaces

Def Assume that we have Us Uz subspaces of V

The sum of the two spaces is defined as

U Uz U.tn 14 Us us 42

The sum is called a direct sum if each element

in the sum can be written in exactly one way
Notation Un U



Complement of a subspace

Prof Suppose V is linik dim and UCV is a subspace

then there exists a subspace W CV such that U W V

Proof sketch Let theset func un basis of of U

Extend it to a basis of V say the resulting set

Deline

W span Wn __ um
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Inverse of a linear map

Def T E L v w is called invertible if there exists

a linear map S e L W V such that

Sot Tdr and Tos Idw

The map S is called the invuse of T denoted by T

Reus house maps are unique

not every lin map is
invertible



Characterizing invertability

Prof A linear map is
invertible if it is injective and

surjective

Proof invertible injective

suppose
Tcu Tcr Then T T ul

Tr injective

Invertible surjective

Consider w FW Then

w T T w w e range of T

surjective



in surj invtible

Let we W There exists unique re s.tk T r W becauseTsung

Define the mapping S w v Clearly hare Ild
Let vev Then T Crl

Iq Tv Jd Tv TL Because T is injective then

SOTIV v SoTI
Linearity T Sw Swe on we we we

inj SwatSwe is the unique d in V that I weeps to wetwe

By def of S we thusget 5 wit wz Sun Swz

Similarly for scalar multiplication

He



Inverse matrie

Def A square matrix A E F is invertible if there exists

a square matrie B E F such that

A B B A Jd j i

The matrix B is called the inverse matrix and is denoted

by A 1



Inverting maps I inverting matrices

Prof The inverse matrie represents the inverse of the corr Lin

mpp that is T V

M in M T

matrix'of Ise map matrix of the originalmatie

In particular a matrix is invertible iff the corr mp

is invertible

Proof Exercise



Properties of inverse matrices

The inverse matit does not always exist

A 1 A A BI B A

At invertible A invertible

Aᵗ 1
1

A G F invertible rank AI in

the setof all invertible matrices is called general

linear group
GL n F A G F A involible
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Representing the identity

Consider the identity mpping V V Hx

Assume we fix a basis of V both in source and target

space then the corr make looks as follows

M T B B 1 9

Now consider it an an and B be bu both

bases on V How does the matrix of the id mapping

T V A V B look like



Becoma B is basis we can write each of the vectors in it

as lin comb of restore in 8

an ftinbrttznbzt mttn.br

dz

Now we form the core matrix T

F t.nl
tell

in



This matrix represents the Identity mapping

In the basis it the first basis vector an has the

representation

a 1 a to.az 0az 0.94

T t this rector gives us Tan

eprseed in basis B

by def of coefficients ti

ten by t tu by an

T an an



Change of basis is invertible

Prof let it 8 be two bases of V Then the matrices

M Jd it B and M J1 B it are invertible

and each is the inverse of each other

Proof Exercise shipped



Change of basis for an arbitrary mapping

Prof let it B be two basesof V Consider the transformation matrix

A M Jd it 1 and t M Jd 8,11

Let T v V linear and M T I t Then

IIA.tt represents T in basis D that is

Y MCT B B

Jdmap

Cv A mini v B

mapping T matrix map 5 matrix

v v

v at
a

no



Ranhofamatt



Rank of a matrix Reg low Mc
47
words

method

Def A e F The column rank of A is III imungdim span column vectors of AI

the row rank is defined accordingly

Prof For a matrix the row and column rank

always coincide We now call it the rank of thematrix

Prof T E L V W Then rank MCT dim range t

Its shipped
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Motivation to study the determinant geometry

Consider the standard basis of
123

en ez ez

Consider a linear wpping that just streshes these vectors Ts f't
let U be the unit tube and P TCU its mapping

The volume of P is then t.tz.to

Et LET
v01 41 1 rollPE in tritz

Want to define a quantity dat that tells us how volumes

change under arbitory linear mappings



Which properties would
such a mapping I have to satisfy

Vol us 1 so we would like that d J 1

T am
with respect to standard basis d t ti

If the linear wapping does not
have full rank

the image volful is not full dimensional but for

example the tube in
112 is just mapped to a plane in

2 dial then volume is 0 hence we would like

d u O

Now let's look at the formal definition



Definition of the determinant

Def Consider a linear mapping d F F Then d

is called a deminat if

D1 d is linear in each column of the matrix

Let A be a matrix with colums an an

Consider column ai assume ai a a for
some ai a e F Then it holds that

det ans n an

det Canon I'm any def can t ian

def an Lai an t det an an



2 d is alternating if A has two identical colums

then det A 0

13 d is normed det i 1



Existence and uniqueness

theoreun.themappingdexishsandisunique.PE

shipped



Properties of the determinant

Based on D1 D2 03 we can now prove manyimportantpropetic

of the determinant

The determinantof an linear wpping does not depend on the

basis

det c A c det A

det A B detA def B

dit At def A

det A 1 det A if A is invertible

cont



A invertible def A 0

det A B det A I dit B

If A is upper triangular that is

a fit
then det A An In

Same for lower triangular
matrices



Computing the determinant in theory

se.IE iatcat a

I det X an an an 921

a b c

det de f a detl bidet

g h i
c at

In gal mere exists theformulaoflaplace that

expresses the determinant of an uxu matrix as a lin comb

of det of many a 1 u 11 submatrices



Alternative definition of determinant
there exists a more straight forward definition of det
However starting from this definition proving the geometric

properties is more cumbersome

in spare on G and T V V men det t

is the product of all eigenvalues repeated according to

multiplicity

If V is a vector space over R and T V then def T

is the product of its eigenvalues 0C repeated according to

multiplicity

We ship the proof that this is the same object as our determinant



Computing the determinant in practice

LU decomposition

Any matrix A can be written as a product

A L U

where L is a lower triangular matrix and U uppertriangular

Iii a
Unn

dat A dat Liu dit L def u

In lii In Uii



Geometric intuition again

Mem Consider an n u matrix A with columns an az au A

Consider me unit cube U c e t Chen 0 cite and its

image P under the mapping A

U P crant ca an 0 cite parallelotope

Then der A gives us the signed volume of P

If h general watrices A skipped

IEEE
LIFE



Applications to integrals

Proposition I CIR open subent
6 SL 112 differentiable

f 6 r IR Then
derivative linear

a
fandy ffladlathh.LIin

volume
element

G differentiable that is we can locally on a small

aI B around approximate 6 by a linear function

And volumes thus get
streaked by the 0

factor given by the determinant



Another occurrence of the def in ML

density of the multivariate Gaussian

p x

2 1

art k nieix.ee

normalization how related to the volume so the

density integrates to 1 in the end
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Eigenvalues weds
haha

am
Def let T V V A scalar A G F is called an

envale if there exists a v V v 0

such that Tv iv A vector v 0 with this

property is called an eigenvector corresponding to

eigenvalue 1 The set of all eigenvectors of 1 is

called the Impace E X T her T AI

Tr to 0

Tv Iv 0

f I v



Geometric intuition

Eigenvalue eigenvector realizes a streaking

Htv

Many mappings do not have eigenvectors

for example a rotation over
1122

streaking 2 v

I
rotation R

I



Eigenvectors are not unique

If 1 is an eigenvalue it has many eigenvectors

For example if V is eigenvector then also

a v aek is an eigenvector

T qr a Crl a i v 1 air



Linear in dependence of eigenvectors

Eigenvectors corr to diet eigenvalues are linearly

independent easy exercise assume they are dependent

and drive a contradiction

Eigenvectors that corr to the same

eigenvalue do not need to
be independent

Simple example v eig c v eig but

and c v are not lin ind

They can be lin independent

Easy example A I then every vector

is an eigenvector of eigenvalue 1

The signspace E t T is always a lin subspace of V



p

ftheore
EveryoperatorT V Vonafinite dimeetVSVhasatleastonerivale

Proof Let n dimV Choose a vector reV v10 then the set

v Tr Tr then

has to be linearly dependent it consistsof ntr vectors in

an n dim space Find coefficients 90 an an such that

p t aorta Trt au Tv 0

Now we want to show that we can factorize this

polynomial of operators
do ant azt an

I c i tri f to It F tan I



shp2 Excursion to complex valued polynomialsfactoriation

Consider a polynomial on with these coefficients

p z do dy z an z n and m can be different
eg it an 0

On we can factoria it

pct c t 1a t 21 z in

Notdificult to see that we can then also factorize p T

Abew

pfTI aotantt.r.tauth
C T 1 I T t I T 1mi



g it
Hence O aorta Tv a The

together
c i tri t t Il F twI

v e her big operator

there must exist i e 10 m such that

T 1 I not injective

ti is an eigenvalue of T

u
Tesoresponding

eigenvector is not necessarily v

Reason

ect.ee it
ti.li E

l

w is the eigenvector

we started with any vector v h



Polynomials of operators

let p I Eo ait be a polynomial

For a linear operator T define P T ai T

Then the following properties enure that factorization works

Let p q be two polynomials
Then

If the polynomial factorizes so
does the related operator

p g
t p t q t

Order of factors does not watter

p T g t g T p T

Moron if p t g t r o
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Diagonalizable matrices

Def An operator T e 2 V1 is diagonalizable

if there enists a bar's B of V such that the corn

matrix is diagonal

MIT 8,81

Notalways the case
neither on R nor on E

will late see some special
cases where it always

works

symmeti matrices



When is a matrix diagonalinable

Propositions let T be an operator on a linin dim

vector space V Let 1 the denote the distinct eigenvalues

off then the following statements are equivalent

a T is diagonalizable

b V has a basis consisting of eigenvectors of
T

4 dim V dim eigenspace 1a t dim ligerspace tmt

Remark Later will see that this is also equivalent to saying

Cdl V has in eigenvalues if counted
with multiplicity and

for all of them the algebraic and geometri multiplicities

on the same



Triangular matrices

A matrix is called upper triangular if it has

the form

nlto

1



Geometric intuition

ᵗᵗMÉÉg vÉh
T

I

cal M T B is upper triangular

m.ph EspanEivi3kineT

ii f i

m.fi ill l aflnll
span Vn v2



When are triangular matrices invertible

Proposition Let T V V have an upper triangular matrixTTisinvetibleifandonlyifaltrint.tt
in the diagonal are non 200

TA

o n



Proof
Proof let us ve the basis for which

T is upper triangular

Assume all ti to

By triangular form
Trn try o thus u range t

By triangular form Tre
aging

for some scalar a

in

range T
also has to be in range T

That true range T and because 12 0

then also v2 E range T etc

In this way
we can see that un vy are all in range T

Thus T surjective thus injective thus invertible



Proof Assume T invertible

Clearly in 0 otherwise Tv O thus not invertible

Suppose 0 Then T maps span v11 v into

span un Vi n

Thus T is not injective on the subspace spanned by un Vi

so there elists v in this subspace sit Tv 0

But then T is not invertible



Entries of diagonal are eigenvalues

1
u hlg m

ME
tᵈ

f

on the diagonal are precisely the eigenvalues

of



Proof
Fix any E F and consider T 1

T t t.is it t

tu t

eigenvalue of T T 1 not invertible

previous
E One of the diagonal entries of

T 1J is zero

proposition
ti for some i

IN



Algebraic multiplicity of eigenvalues

Definition The number of times each eigenvalue occur on the

Tiagonal is called the algebraic multiplicity of the eigenvalue

Remark More often the algebraic mutt is defined using

the characteristic polynomial which we shipped

The two definitions are equivalent

Deleon The geometricmultiplicity of an eigenvalue is the

dimension of the corresponding eigenspace

In general the two do not agree



Over each matrix can be triangularized

Does not hold on 112



Proof idea as an image

split off the part of the space that belongs to eigenvectors for A

On remainder U apply induction hypothesis

then add any basis for eig t and show that it

does not destroy upper trials form

subspaced
1

subspace corr to
eigenvalue 1

basis Un Um Wn WK Bp



Proof induction on n

know already that one complex eigenvalue exists A

Consider subspace U range T I complement of eig t

Easy to see that U is invariant under T that is TU CU

and that dim range u n

We can now apply the induction hypothesis to the

operator T U U exists basis u m un ca

such that Ty has upper triangular form

Now extend Ilm by k to a basis of V again

Tw Twn tant to T I wn twy E span Emily
similarly Tw e span Lemiewi
Thus T is upper triangular wrt basis year W h py
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Metric space

Definition Let x be a set A function d AX R

is called a metric if the following conditions hold

u v w EX

1 d try 0 if y and
M

dael o

t.si exigaee
2 d x y d x x symmetry

3 dear d v w d a w



Norm on a vector space

Def Let V be a vector space A norm on V is

a function 1 11 IR such Mattery EV te F

the conditions are true

N1 11 1 x 11 1 11 11 11 homogeneous

N2 Hexyl He 11 Hyll triangle inequality

NS 11 11 0 x 0

NG 1 11 0 o
Idiliniteness

1 1 is a semiIn if N1 103 are satisfied



Euclidean norm on IRA

Euclidean norm on Rd 11 1 xp

Lutton norm x1 length of
distance x 0

Every norm induces a metric d x y lx yl

But not vise versa try to find a counter example



p Norms on 1Rᵈ

Def
Consider V 112 Deline 1 Up IR IR

Ax llp kilP
P

for ocpco

notalways
a norm the case p 2 coincides with the Euclidean norm d

Furthermore we define if 112

11 11
g

i max Itil is a norm

11 110 number of non zero coordinates

not a proper
orm see later it 03



Unit ball of a worm

Do the unit ball of a norm is the

set offits such that norm 1

Bp xe Rd Help 1

The unit sphere is the set of points such that

norm 1

Sp e Rd Help 1



Illustration unit balls on 1122

Eft
Q.fi IHJ

louver balls

p n p 5 p 0

pan
f

f
Takinot

p 0.1
louver P 0.5 p O



When is a p norm a norm

c.llpisanormonirdiffpzn.yg.apammaynyu.up.my

Homogeneity holds for any ps 0

Triangle inequality this is the critical point it

only holds for p 21
This is due to the famous

Minkowski inequality
which holds iff p 21

hit it Elite bile
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Equivalent norms definition

Definition Let be a vector space and 11 Ha and

I Up two norms on V Then the two norms are

called topologically equivalent if there exist

constants α β 0 such that

x E V Hella 11 11 B Ux 11



1 ct1

d

Proof W.l.org
we prove that if 1.11 is any norm on 112

then it is equivalent to 11 110



E.fii iiiEiiti
standard basis of

1129

11 1 11 tie ill

Hx eill

Elif
Hello Heill

11 110 E Heill

w
C1



t.tt ii.Iiiiii
Consider f S IR 11 11

The mapping f is continuous wrt 11 Up

this follows directly from the fact that

I fix fry 11 11 11 11

Ix yl c lle y to

The S is closed and bounded thus by theorem of

Heine Borel S compact Any continuous mapping

on a compact set takes its min and
max

2
min fax e s



Because 0 S sphere not ball we can conclude

from the definiteness that is 0

Now compute For x S we have

i new H il.tl Eall it

choice of
52 11 110 11 11

in

Cz
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Scalar product definition

II Consider vector space V A mapping Vtv IR

is called a scalar product if

linearity
S1 Stattz y encyst t x

21 h x y 1 x y

symmetry 3 x y Ly t if on IR

Yy Tri if on G

complex conjugate

positive 54 tix 0

defite s 5 cases o x 0



Examples

Euclidean scalar product on 12 x E y i
x y riyi

One X Y Efi Ti

b

E a b f g fctlg.tt dt
a

is a scalar product but space would not be complete



Scalar product and angles

Prof Consider the standard scalar product on IR Then

v w Hull Hull cos 21

where α is the angle enclosed by v and w

Proof In a general triangle we have

Iv wh Url 11Wh 2H04kwh cos α

Yu wu Cv w v w Hull Hull 24 w

cu.ws nunnasial

ie



Banach and Hilbert spaces

Def A vector space with a norm is called a

normed space If a normed space is complete

Teachlachy sequence converges then V is called

a Banachspac A US with a scalar product is called

a preHilbert space If it is additionally complete

no iris called the
M

keywordFEE
Kimproducing



Relationship between norm and scale product

scalarproductsnorm.cl

Consider a US with a scalar product
c s Deline

4 U IR as V then 11.11 is

a norm on V the nom induced by c s

The other way
round does not work in general

can you find a somtrexample



Relationship between norm and metric

normometr.TT

Consider a VS V with norm U 11 then

d Vev R d tax lx yl

is a metric on V the metric induced by the norm

The otherdirection does not work in general

can you find a counterexample



Important inequalities
Consider u v e 1129 and denote by U Up the p norm

Cauchy Sihwart inequality

Icu v31 Hull Hulz

Holder inequality Let p g n with Ip 19 1 then

Ka v31 luivil luap Up Ug
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Fand

orthogonal projections



Orthogonal vectors and sets

DE Consider a pre Hilbert space V

Two vectors v1 v2 E V are called Inal if v1 v22 0

Notation Ve V2

Two sets V1 V2 C V are called orthogonal if

u EV v2 tV2 Cvp v2 0

For a set S C V we define its orthogonal complement

St as follows St reV v1 s s



Orthonormal vectors and sets

Def

Two vectors in v2 are called orthonormal if they are orthogonal

and additionally the two vectors have norm 1

V1 V27 0

Hurll 1 up 11 1

A set of vectors u v2 Un is called orthonormal

if any two
vectors are orthonormal



Orthogonal orthonormal basis

We are particularly interested in orthogonal orthonormal

bases of a space

Preposition In an orthonormal basis Un Un

the representation of a vector v is given as

us Eaiui

v Ʃ v u Ui
is

Proof exercise

We still don't know whether an
orthonormal basis always exists



Projection general case

Def A e L V is called a projection if A A

blue vector gets
projected on red

lift



Orthogonal projection

MeoremIDI.letahafinikdinubpaeeop.ro

Hilbert space It Then there exists a linear projection

hygpyyygyyuyyy.pu.mu



existence see next theorem

Ida Let Un un be an orthogonal
basis of U

Deline v ubypucwl É ui

Obviously

Pu linear

w e Ut

pu w 0

11s



How to make a given basis orthogonal

Proposition Let us un be any basis of a pre Hilbert space

Then we can transform it into an orthonormal basis up un

Pf GramSchmidtorthogonalizations

Is a procedure that takes any
basis v1 un of a finite

dim US and transforms it into another basis Un un

that is orthogonal



Intuition iterative procedure

Steph un i i Un span an

Steph Assume that we already identified as Una

Project Vp on Un n and keep the rest

I_ Ill
Renormalize ff

ft
un nñn

Works in theory would need to prove that shipped

In practice it quickly mulls in large numerical errors

QR factorization see later



 

formogonalmaticest



Orthogonal matrices definition

Def let Q e 112 be a matrix with orthonormal

column vectors wrt Euclidean scalarproduct Then Q

is called an onal mtrit

If Q E G and the columns are orthonormal
wrt the

standard scalar product on E then it is called a

unitary matrix



Orthogonal matrices examples

Identity f 9 ReflectionI

Permutation of coordinates 8

Rotation in 1122 cos sin

sine cost

Rotation in
1123

Rotation about one of the axes

1 0 0

cosQ sinRon
no cost

General rotation can be written as a product

of elementary rotations



Properties of orthonormal matrices

Let Q be orthogonal Then

see also slide
colums are orthogonal rows are orthogonal below

Q is always invertible and Q Qt

Q realizes an isometry Krev 11Qull Hull

Q preserves angles Qu Qu u v Karev

I det Q 1

the respective properties also hold for unitary
matrices U

4 It

Ref assignment



Orthogonal rows and colums

Consider the projection matrix A The columns are obvious

not orthogonal The rows formally satisfy that 18 4 0 the

property that rows orthogonal cols orthogonal does not hold here But

note that A is not an orthogonal matrix because the latter requires all

rows cols to have worn 1 in particular also bell rank

The statement rows orthogonal column orthogonal clearly

does not hold for arbitrary
matrices



skilled Representation of isometric mppings

theorem let S E L V for a real vs V Then equivalent

a S is an isometry 11 Jul Hull Vue V

b there exists an orthonormal basis of V such that

the matrix of S has the following form

m 000
0

where each of the little block

either is a 1 1 matrix a real number being 1 or 1

or is a 2 2 rotation matrix cos sin Q

sin cos a

Roloshipped



 

IsymmetricmatricesT

In ML sum

Iwakinareaoutheplani

covariance matrix hernel
metric similarity metie



Symmetric matrices

Def A matrix A E 112 is called Immetric if A At

A matrix AE is called Lean if A It



Hermitian matrices have real valued eigenvalues

iiiiiiiEmn
are real valued Eigenvectors that correspond to different

eigenvalues are orthogonal

PFAeg.valueoftwihequrctrx.thenmm.hn

Let ie 7 Ax e

cate Cate T

_property of scale pod oneI E R



tn tn Cta tal eigs of A t 12 then

1ft as above Icty

D tacteitz delta Xz

in 12 ti te

either 11 12

or if the tz then Ctn tz 0

in tz



What can we conclude from here

Each matrix 4 has a eigenvalues Ek

For hematite all a eigenvalues now live in IR

the eigenvectors still might live in 6 and not in 12

S etiswae.IR are a special case of hermitian

because A
m
At It so it also has a real value

eigenvalues But the liquiver might still live in E



Self adjoint operators

Def An operator TE 2 V on a pre Hilbert space V

is called selfadjoint if

Tv w Cv Tw

Sometimes it is called a Hermilean operator on

symmetric operator on IR

Remal Over 6 self adjoint operators are represented by

hermitean matrices On IR self adjointop are represented

by symmetric matrices



Self adjoint operator has real valued eigenvalue
and eigenvector

PropivvestorspaieondorIR teklvl.T to.selfadjo.int

Then T has at least one eigenvalue and it is Ivaled
lnparticularincaseof112 atothecigunveatorlivsinI12I

Already know over 4 every matrix has an eigenvalue But

it could be a complex number Now if T is self adjoint

have a real eigenvalue



Consider case F 112 EIR

Proof n dim V Chose v10 and consider

v Tv Tv T v ER

These vectors have to be lin dependent
net vectors dim in

The mist ao an EIR not all 0 sale that

dov as Tv auT v D

Consider the polynomial with these coefficients

and decompose it over IR into linear and

quadratic factors



Cto bi Ci ti e R

t and t as an en

coupon on R

Mtm 21

iiii ee
to

be decomposed into linear

tumi
in particular they satisfy
b c 4 C Howin out

could factorize them by the

quadrati formula



Replace the x by T

laoeante ea.tv chair'ÉÉfu
Now can prove the quadratic operators're invertible see A below

So we multiply the equation with their inverses and obtain

T 1 I T tu I v

Because we had chosen V10 at least one of the tour T XII

has to exist i e m 1

But then also the product T 1,1 T 1m It is not

injective tune at least one of the factors not injective

thus t eigenvalue over IR In particular the eigenvector

lives in IR as well Do



Econ Suppose T self adjoint and b I ER satisfy

62 241 Then T2 bit II is invertible

proof Intuition

bite 12 1s b 70

20 Tobyan
So 21 be c is an invertible realnumber

Now do it Consider any V10

Lf bit I v v

Etchun
Hiv Hull Canchy Sihuartt

1150112

litull 161 liull Hull 1110112



Tul
1

c 1 huh 70

Toby.se

T bT cI u 0 for all V40

1 bit cI invertible



Spectral theorems for symmetric
hermitian matrices

o
rmiogoua ÉasÉlÉabÉ Fhr u

If

matrix Q E 112 and a diagonal matrix D E 12 s.tn

A Q D Qt di gigit
isn

n
Q 9i



Proof sketch By induction on n is dim

Back 4 1 clear

Leep n 1 my
previous theorem ER

A symmetric A has atleast one eigenvector UER

U spank U is invariant under A Kvell Ave U

Consider Ut and the restriction of A to Ut

On Ut A is again a symmetric operator

and dim Ut n 1

Apply the induction hypothesis on this space of dim n 1

Does the job Dm



Complex version of this theorem

other not as relevant to ML as the real version above

theorem A hermitian matrix A e is

unitarily diagonalizable
there exists a unitary matrix U

and a diagonal matrix D s th

A U Dut

In particular the entriesof D
are real valued



 

Positivedefinitematics



Positive definite matrices

Def A matrix A e 112 is called

semi delinite pod

positive definite pd if KXER 0

xᵗAx 70

BE A matrix A is called a Gram matrix

if there exists a set of vectors v1

ns.th.aijXi Tj

On Gram matrices are hermitian

On 112 Gram matrices are symmetric



Characterization of pd matrices on

A 6 hermitean Then equivalent
theorena

a i psd Pd

ii All eigenvalues of A are 0 70

ii the mapping C G with

x y It A x

satisfies all properties of a scalar product

except one if x 21 0 this does not

imply 0

iv A is a Gram matrix of u vectors aij Lti tj

which are not necessarily lin independent

which are lin independent



Observe that implicitly this theorem implies that

one 4 in have pd self adjoint

Over IR this is not true pd symmetric

thus to get a similar characterination of pd
matrices over IR we need to add a symmetry conditio

Example A In 1 on IR if
10

tax y x 0

So A is pd but not symmetric

over G the same matrix is not pd
because t to can be negative



Characterization of symmetric pd matrices on IR

To Do

Add



Roots of psd matrices

p

3

1

psd s
uchI Iat ʰ

Sometimes B is called the square root of
A sometimes denoted



Proof
Spectral theorem A U D Ut D

psd eigenvalues ti 0

Define TD
a

and set

B U ND Ut Does the job Be

Remarh more generally one can define A for any KEN

And because we can also define A in case pdl and A one

can define AP9 for p.GE 2



Important psd matrices for ML

Consider a data matrix X E R
d

n data pts I dims

Then the matrix C XᵗX a Rded is called the

covariance matrix

The mahit K XX E R is called a kernel matrix

for the linear kernel and in this special case it

is also the Gram matrix

All these matrices are symmetric and positive
semi definite

prove it



 

Lariationlcharactrization
eigenvalues

Pechakey
word

string
Literature Bhatia MatrixAnalysis



Rayleigh coefficient

Def Let A e 112 be a symmetric matrix

Ra R 1403 IR If_Ifa
is called the Rayleigh coefficient



Rayleigh coef first eigenvalue

Prof Let A be symmetric let in to Eth

be the eigenvalues and v1 in the liquirectors of A

then

iii

III Races Mean
At in attained at un



Intuition for the proposition

Assume A is expressed in terms of the basis vnin.vn by

A 8 _In Let y be a vector also represented

in this basis y Yeun t Yare t Yu ru Y

yᵗAy 14 day

Among the rector f
the smallest result of yᵗAy would be firm by
the vector and the value would be 1

Vn



Formal proof sketch

Assume we start with the standard basis

let Q in be the basis transformation that brings A

in diagonal form Q orthogonal such that

A Qt 1 Q with A diagonal

For a vector x Fu in the original basis we now consider

the transformed vector y Qᵗx and compute

its Rayleigh coefficient



Racy
ÉÉ

y9
qÉ a eta

t.EEIT
u



Now we look at the minimum of Racy

min Racy min then t then

11 11 1Hyll 1

This min is attained for that is

y Qᵗx un with value Rly 11 no



Rayleigh coeff second eigenvalue

Prof Consider a symmetric matrix A with eigenvalues

the tz E Etn Consider the optimization

problem
R t

Yin
in

this problem is solved by V2 R v21 12



Proof intuition

Consider operator A restricted to the space

Vnt span in We know that on this

space A is invariant and symmetric so we can

apply Rayleigh to this smaller space

V span v2 un

If we apply Rayleigh to Vit then we get

the solutions 12 V2



Min max theorem Courant Fischer Weyl

theorem A E IR symmetric eigenvalues t tu Then

1the min max Race
U subspace E 4140

dim U K

max min RA Ctl 2

ahh then EULO



Proof intuition

For case 1 1 case 2 is pretty much what we

have proved atrady.tt
max Miyang Rael
U susspace

previous result

11s Ram to

111 follows similar principles

2 similar to the previous stchner

Lee induction



 

IMatrixnormst
Éeywords
low

rank
approximationPerturbation
analysis



Motivation

Want to quantify the similarity

of various matrices

So we define norms on the space

of all wetries

Not all of them on proper norms



Definitions of matrix norms

Given a matrix A E Rm Define the following norms

11 Almax 11Allo m.ge aijl

A
I Fair Vt

T

Frobenius 120T where o are the

norm singular values of A
see next slide



11 All
2

6
may

A where Gmax is the largestsingularvalue

110
Euclidean norm on vectors in

IRM

Operator worm spectral norm

trace see later

AAU tr VAEA nuclear norm

Many more matrie norms exist



Simple inequalities

Let Ae 112Mt Then

HAI NAIF 1AM

Hallo Hall In AAllo

Hall VIANTAIT

Many many more see eg the
book on Matrix Analysis

by Bhatia



 

Singularvaluedecompositions



ML motivation recommender systems

Netflix ratings huge
matrix

e

Ei
rating of
use for
movie

ratings of a particular use are not random but have structure

compress
the matrix into something

much smaller that

also better represents the
structure of Mic matrix



Singular value decomposition

in Consider A E IR of rank r Then we can

Prq.LA in the form

lau.E.IN
www.mn.ve

pjmm7m2 E IRM is diagonal

m Timo

Exactly r of the diagonal values on 52 are non zero



Illustration

DIET.EE

right singular
A U Ʃ Vt vectors

left singular Gi singular

vectors values



Proof sketch

IR
t

Given Ae 112 we consider E

obsure B is symmetric

Ata At A
ᵗ

At A
c Aᵗ ᵗx

Ax

B is positive semi definite

xᵗ Bx Cx Bx x Ata x

LX.CAT 2 Ax Ax

Ctx y 11 A 1 0



So there exists an orthonormal basis of eigenvectors

In with eigenvalues Itn 0

Deline

on
112m where ri VT

U n i matrix with colums ui Ii
V Yi matrix with Vi as columns

Now we need to show that with these definitions

we have A U Ʃ Vt



Colums of U 2 are given as

five ri 1 Avi

Now multiply with Vt

rows of Vt are the Vi

exploit that if it then vi v and a villed

The terms consisting of i j with it cancel

the terms with is will result in a factor of 1

So we will be left with matrix A

Finally it is easy to see that U
V are orthogonal

matrices and that the numberof non zero entries in Ʃ

coincides with the rank



Basic properties of SVD

The rank of a matrix coincides with the number of

non zero singular values

If the matrix A has rank r then

her A span urini un

range A span us ur

Proof Exercise



Key differences between SVD A and eig A

SVD always exists no matter how A looks like

can be rectangular does not need to be symmetric

U V are orthonormal not true for eigenvectors in general

singular values are always real and non negative



Key differences between SVD A and eig A

If A E IR is symmetric then the SVD is

nearly the same as Tequvalue decomposition

Xi vi are the eigenvalues rectors of A then

Itil vi are the singular values vectors of A

In particular left and right singular vectors are the same

up to signs



Relationship SVD A and eig Aat
Tymmetric

For general lust nec square matrices A

Left singular vectors of A are the eigenvectors of Aat

Right Att

1 0 is an eigenvalue of AA

VITO is singular value of A



Rank 4 approximation

Given SVD A U Ʃ V9 entries on 02 sorted in decreasing

order be IN Now we are going to define a new matrix An

by the following procedure

Ñ

1111 11 4
EI a

mek K b ken

men

take first k cols of U

first k entries of Ʃ

line knows of ve

More formally

An rini vit observe rank Anl k



Best rank 4 approximation

Let U 11 be either the Frobenius norm 4.1 or the

two norm U Ur
Consider a matrix A E IR An the low rank matrix
constructed above and Be 112Mt any

other rank h matrix

f
fi

ygqq a.iq



SUD and matrix norms

Consider A e 112 with singular values on 02 2 Gp

Then p min n m

11 All on t op

I All 2 On

Proof shipped



Relation to machine learning

Etchonarasons for a rank U approximation

the running time of many ML algorithms scales heavily in

the implicit dim Often they can be implemented efficiently

if watrices an spouse or band

Schiarason MC only works if the date is simple

Typical assumptions
Lives on a_dm manifold a locally low rank

Is sparse

replacing a matrix with its CVD is supposed to get rid of noise



 

IPseudo
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ago



Pseudo inverse

Definitions For A E IR a pseudo inverse of A is

defined as the matrix A IR which satisfies the

following conditions
If A would be involible

a AFFÉ At Id AAA A

Fdin general nearly inverse

2 A A A A

3 AA
ᵗ

AA symmetry

4 A A
ᵗ

A A



Intuition
Consider a projection from

IRS IR

a

Cannot invert obviously inverting would mean

to reconstruct the original point

But I could invent a reconstruction

for example R IR 1123

RC

Now we have A R A A

A A A A



Intuition how could we define a pseudo inverse

Consider a digagonal wetrix A tho
with th An 0

then set A is 1

no

Does the job

How to do it for general matrices ns SVD



Moore Penrose pseudo inverse

Proposition let A e 112 A UƩV its SVD Then the following

matrix is a pseudo inverse

1 VƩ uᵗ with Ʃ e Rm

H Ei if Ʃ to
Ʃ

otherwise

Ef easy just do it



Reposition If A is invertible then A A

Roof easy just do it



 

Trace of a matri



Trace

Def the trace of a square matrix Ae F is the

sum of its diagonal elements

tr A E aii



Properties

tr 112 IR is a linear operator

In particular to ATB tr A tr B

to A B tr B A

tr A B to A t B

trace does not depend on the basis

Let Te L v1 and 2 and D two bases of V then

tr MCT D t.CM T B2



The trace of an operator equals the sum of its

complex eigenvalues summed according
to multiplicity

wrt some basis Un un

A in

to E Eili

trace equals the negative of the coeffient
in frontof

1

in the char polynomial

pace
th a ntmt.n



Trace vs determinant

to A Scum of eigenvalues

det A product of eigenvalues



Riddle

Consider a real valued matrix Ae 120th

Over we can always find eigenvalues th the

and bring the matrix in triangular form A Then

w A Ʃ aii ER
iin I but the too an identical because

trade is independent of befir

tr i Ʃ verse W A E R

So even on the hose always is a real number Seems confusing

Let's look at an example



Example Consider a rotation matrix

A
cos sin

sin cos

A does not have any real eigenvalues

The trace is given as 2 cos

the clear poly of A is

p t det A I deg
00 t sin Q

sin icoso t

cos t sin't

t 2cos t cos 1in
0

t2 cost t 1



The roots of the char pol

in 2cosotzvkwsoIC.name
4

4 cost 1

4 sin

eigenvalues g cost i sin

EG

The matrix has a dagonal representation

Iii
tr o 2 coso isint cos Q isina

sum in
2 2 cos



What is going on

For any watrix A e 6 if de e is an

eigenvalue then also It is an eigenvalue

Reason the complee eigenvalues have their roots in solving

quadratic equations as in the last example

t.in ct
IR b has 70 eigenvalues IR

If b has to then eigenvalues are

tri to irate
so they are complex conjugates and tattz EIR



 

IMatrixseriest



Spectral radius

Def the spectral radiusof a matrix AG IR or As 6 is

defined as

SCAI max 111 tee eigenvalue of A

Note that even for real matrices this definition looks at all complex

eigs of A



Propositions lim An 0 g At 1

k3002 in Frobenius norm 11AM 011f 0

Proof Let v the eigenvector of the eig 1 that defines g CAI

0 lip
Ah u him to lim th v

k 70 4 nov

This implies him the O thus 111 1

Proof for symmetri matrices

A U D ut then th U D ut

11 All f 11 D I 0

For general matrices need to uploit another normal form

the Jordan normal form Shipped



Neumann series

Prof The series Ak courage if and only if gla 21

If g A 21 Mar I A is invertible and
over IR

I 11
1
EE Ah Eak

w 0

Proof intuition for symmetric matrices easy can apply

ponce to diagonal matrix D as above

In general a bit more work shipped



Matrix exponential

For any matrix
A the series

up At I At

converges It is called the matrix eponential

the watrix epcal is always invotible and

eep A1 exp A



 

Implementing matrix

operations

Literature Golub van Loan Matrix computations



Triangular matrices are great

If we have a matrix in triangular form the wavy standard

quantities can be easily computed

Solving a liver system A b

t infill
stating from bottom 3 be as 1

then plug in the second low row 12 b2 9234211922

eigenvalues are the entries on the diagonal

def A is the product of the diagonal
entries

So many numerical algorithms are based on triangular matrices



Linear system theory

Solving linear systems
is about the most ben's task and occur as a

subship of more complex algorithms
all over theplace

Ax b

Prof Ae 111ᵗʰ b ERM
i the set of solutions of A 0 is given by her A and

is a subspace of RM

i the system At b has at least one solution if
b e Range A

ii If w is a solution of Ax b then the full set of

solutions is given by w her A w v1 ve he 1A



Gauss algorithm to solve linear systems

Interition
Take the first equation and

use it to eliminate the

first variable in all other equations

then use the second equation to eliminate the second variable

from all the remaining equations

and so on

At the end we are left with an upper triangular with'x

We then solve the system starting from the bottom

of course one can do clever triske such as selecting the best row

for replacing others pivoting rearranging

Computational complexity in general can O m



LU decomposition

Idea One can see that the Gaussian elimination algorithm implicitly

does something more general

Given a square matrie A it decomposes A into a product

A L U

where L is a lower triangular matrix and U an upper triangular

matix.LU

decomposition exists under certain conditions In particular

to symmetric pd watrices it always exists

Computational complexity O m



LU decomposition to solve a linear system

O n Once we have a LU decomposition

the solution to the problem A b can then be found

by solving too linear systems
trivial due to triang form

oral 111 LY b
Ax Lux Ly b

0cal 121 Ux y



LU decomposition to compute the inverse

To compute the inverse of a matrix we have to find a matrix

that solves A X I this corresponds to solving

a linear systems Ati ec

Once we have the LU decomposition of A we can simply

solve them

O m



Cholesky factorization

For the special case of symmetric psd matrices one can

simplify the LU decomposition

A LLᵗ

Is numerically very
stable uses less memory than LU and is

a bit faster than Lu still 0 us but will better constants



QR decomposition

Any matrix A e 112 can be decomposed as

A QR

where Q is an orthogonal watrix and R is upper triangular

Serval algorithms exist with ditt
advantages disadvantages

Computational complexity O m



QR decomposition to find orthogonal basis

In particular if A has fell rank i.e its columns form

a basis of 112 then Q contains an orthonormal basis of 112

More generally the first k columns of Q form an orthonormal

basis of the subspace spanned by the first columns of A



QR decomposition to compute a eigenvalues

of dense matrices A

Iterative procedure A A

For 1 1 2

Compute QR factorization of A
1

A Q R
1

Recombine in reversed order

A R Q
141

Note Ann Ruan Qi Qu RnQn Qi QuRu Qr Qu AuQ

Under certain assumptions A corrugh to a triangular matrix or even

to a diagonal matrix eg if A is symmetric



Largest eigenvalue and eigenvector

Let Ae 112 with eigenvalues th the suite that

this 1121 Hml

Powermethod vanilla version

start with a random vector to

iteratively compute Vuen Fifty

If Ital 1121 then Vu convergent to the equator in

The speed of convergence depends on the spectral gep Hal 11,1

Problematic if eigurpace has dim 71 or if it is unknown

whether A has an eigenvalue in the first place



Iterative methods for sparse matrices

Many of the algorithms we have
seen LU QR cannot really exploit

sparsity of a matrix Bad in MC many matrices are very sparse

Altonatinly one uses iterative methods that are based on

matrix vector multiplications example pour method



Conjugah gradient method for
linear systems

of sparse symmetric pd matrices

want to solve A b

Consider the minimization problem min Cat with

Oct 1 tax xᵗb
Minimum is achieved by setting A b

So we can find the solution to our system Ax b by

minimizing

the gradient is ACH Ax b and can be computed just

with a matrix vectorproduct good for sparsity

Now apply optimization methods conjugate gradientdescent



 

IshippedmaterialT

Not treakdthisyea buthivideosshae.ch if you are interested



 

d
guippe Quotientspaces

21 Consider a set S A subset Rc StS is called an

equivalence relation on S if x y z e S

Cell x x e R reflexivity

EZ x y e R yet E R symmetry

E3 x y ER y z ER x z E R transitivity

Notation x y R y



V US WCV subspace

ExantInu v new

Consider the space L R of all functions f IR RE

YTar are Lebesgue integrable Define

f ng f g almost everywhere



If the equivalence class of an element a ES

under equivalence relation is defined as

a be 5 bra

Prof Two equivalence classes a and b are either

identical or disjoint

Consequence An equ relation on S results in a disjoint

Tuition of equivalence classes



o

iiiiiiiiaim.ua
Vnu v U E W

Denote the equivalence classes as v

observe the equ classes have the form

v3 v W u es weW u v w

new wow c V



Define the quotient space as

V
w v3 vev

v u YW

v u u

v3 Iv



These operations are well defined

suppose v'V ie v e v v v

U n u

v u v u

unv we W u u w

u u E EW u u I

v u vtu

u's a uta.gl
real vital

tu v tu

Eft legelew
similarly forscalar mult

Vw is a vector space exercise



Prof Consider g V V
W V v Then

g is linear

her g W

range g Vw

If V has finite dim then dim Vw dim V dimW



 

skip
ED characteristicpolynomial

Motivation Av Ar Auth matrie
I 0

A AI v 0

v her A II

rank A II n

det A II 0



Def the characteristic polynomial of an urn matrix A

is defined as

PA t det A t I

Example A 911 912

21 922

a a t 1 de 1 t

ain't are
det

an 922 t

an t ane t 912.921

t t am 922 912 9214 911 922



06111 is a polynomial with dree n

Char pul does not depend on the basis

Proof Consider A basis transformation matrix U

Want to look at clearpol of UAU 1

det UAU t El

dit UAU t T.mn

dit U A t I 4
1

det 41 def A t I det u

det A EI



The roots of the characteristic poly correspond

exactly to the eigenvalues of A

Over the clear poly always has a roots

so the matrix has n eigenvalues not nee

distinct

A is invertible E 0 is not an eigenvalue

If 0 is an eigenvalue v.v with

Av 0 v 0

her AI non trivial 4 A not invotible

Let A G L v I eig of A them is an eig

of A

Let A be invertible I eig of A then

V1 is an rig of A
1



Def For an operator A with eigenvalue 1 we define its

as the dimension of the

man
The athacmultiplicity is the multiplicity of the

root 1 in the char poly

In general the two notions dot coincide



Computingeigsintheol
Write down the clear pol find the roots

n eigenvalues

To compute the eigenvectors solve the lin system

A x

In practice see later numeries
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Convex set

Def Consider a real VS V S C V Sis called

court if t Ost 1 and Keyes

txt n tly e s

Kiln



Symmetric set

Def A set C C V is called symmetric if
E C E C

of

a



meaconvertsinducenone
Let c iRd closed courex symmetric

and has non empty interior Define

p cel inf t.io E e c Then

p is a

few
no
If C is

did W

mammammam.name
c end pct

1



1

aaaaaaa.com
is bounded symmetric cloud convex and has

non empty interior

Tidfachrabywhi.nl I need
Illustration
part 111

to multiply to end up on

Y

lÉe UTI Ia



Proof
The next couple of pages treat the proof of

this theorem



Proof ledt7
Want to prove given e 112 He set 70 Etc

We are going to prove J E 20 such that

Beco e e R l hell CE C C

Intuition

If



By ass C has at least one interior point

CO E such that

Be Crl C C

Be o ve e e e Becol

By symmetry e e vee E C

By convexity Cute r e e e c

so B Col C C so the set tso EEC
is non empty

the intimum of inf FEE exists

because Sx CIR O is a lower bound



Now we need to prove all axioms of a worm

o.ec

t 70 0 E C

inf 1 E e c 0

proi 0



lpcaxt.lapcT
Taso man

plant inf 01 E C
s

inf as so Eec

α

p x x α pct



By symmetry we also get

pl 1 inf so Eec F EEC EEC

inf t so E e c pre

Combining the two
stakeouts gives homogeneity



Inequality Consider x y aird s t 0 such that

F e C EC

Observe It It 1 Thus by convexity

F It E C

E
two scalars that sum up to 1



party inf a GC

l
refer

Ft E E E C

E C

No



p x y inf us 0 e c no

S t tw

s was
choti its mat c

t E C



Consider a sequence silien such that

F EC and si pcr

Similarly Itilien such that e c and t payt

By the argument above we know that

ki petty si t ti

I
pct pay

petty pits pcyl



pexi 0 sx.io

oeinfftzo Eec 0

There exists a sequence th such that

th 0 and E E C V4

Now assume that x 0 Then the sequence

Eu new is unbounded contradiction because

Cic bounded

a
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Icontinuous differentiable integrable



Space of continuous functions

I Let T be a metric space
b

t f T IR I f is continuous and
bounded

cEIR
As norm on Cb T we now use

Ktet If t C

If 1120 E P
I fail

IP Then the space Eb T with norm 11 Up is a

Banach space a complete normed vector space



D.aeEchech vector space axioms

norm axioms

Completeness follows from the fact that 11.110

induces uniform convergence



Space of differentiable functions

Let a b C IR C1 a b f a b IR f is cont
differentiable

Which worm

Consider 11 1100 With this norm is not complete

I
limit function not differentiable

Consider 11111
Epg

max If CHI If t 1

1111111 114110 If'll o

e a b with any of these
two norms is a

Banach space



Consider Eb Carb with the norm 11ft is If CHI at

tree min

III

Consider R a b of all Riemann integrable functions

on a b CIR together with 11 111

Howen on R 957 11.4 is not a 7T
norm it is not true that

4111 0 f 0 If dt o
but f 0

__



The space Lp
If For 1 p 0 we define

Lp a b f a b IR f measurable wrt the Lebesgue measure

and VIRCHI at 0

Hflp If P d 1
P



111 itatnononLp
Loof Vector space clear

semi norms observe flip 0 f 0 alienistwhere

so we donot have that ftp 0 f 0 a e p

Aflp is not a worm For example the auction

fix
it 17

has integral 0 but is not
0 otherwise

the 0 function



1nhpiscouplehunderUhp.li

Proof If filien is a Cauchy sequence in Lp
then want to prove that limfi e Lp

inso

This is equivalent to proving the following

hetcfilibeasequencesuctm.at

a nllfillp
0

ih thenaisfehpsuchfifliut.pl



Define

g Ʃ fil
ien

Note this might not yet be a well defined fat
from a b to IR might be at certain points

In E I fil 2p

B Minkowski Minh n asc

gulp 11 til Up fillp a

gin g monotonously



By theorem of monotonic courifuce g is measurable

and we hatch fling di
1

hyde
Jordi

ar

I g a e that is there exists a set N

of measure 0 such that on a b N g is finite

Now we can define

g t
5 t to a b N

E Lp
O te N



From Mis it now follows that f t fict t N

exists For t s N we at f t 0

Now f is measurable and in Lp

because IfIPd1 g de co

Finally Ʃ fu courps to f in 11 lip
because of the theorem of dominated convergues



From Lp to Lp

We constructed a space Lp will the Lebesgue integral

as a semi norm This means

given 4 E Lp we can change the p values of f

in a setof measure 0 resulting in F but the

worm does not see a diffence

f F 11 0

To fix this we want to consider functions to
be equivalent

if they only differ by a set of measure
0



The formal construction goes as follows

Deline N her 11 Ilp f E Lp Ufup o

is a subspace of Lp

Now consider the quotient space of Lp wut this subspace

Lp aib Lp Carb f

Deline a norm or Lp by 14 p fp



This norm is well defined if f f e f

then Iflp 11711ps

this norm is a norm because

11 f Up 0 f o

Conclusion Lp with U Ilp is a Banach space

For simplicity in future we write flip for A f Up



Elements functions in Lp are equivalence

classes f consisting of all functions that

coincide a e

It does not make sense to evaluate

f o because 0 has Lebesguemeasure 0

quite annoying for
machine learning where we

always want to evaluate functions or input points

often use alternative spares inshed he elauple

reproducing hovel Hilbert spaces
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Continuous bounded

X Y normed spaces T Y linear Then

TtT following statements are equivalent
i T is continuous ex keto 3870 Kyet

i T is continuous at 0 1 411 d Nix Tyl LE

a i sound

M O x EX ITx1 M 11 1

iv T is uniformly continuous
0 7870 xeX Kyex
Ux ylled A Tx Tyll LE

Mili.ly
rmn



Definition

Def X Y normed spaces T 4 linear and continuous

11 Tell sup TellThi
Ek it it iii

is called the_worm of T

Observe coincides with the matrix worm

1 112 as we had defined it earlier



Examples

Evaluation operator T E 0,1 IR Tf fco
Tormeconsider 11.11g on 60,17 1 1 on IR Then

IT 11 1

Ifec.nl supfff excise 1

T e 0,1 IR Tf offal at
Wlt me norms as above tis out ad has

115 11 1



Examples

Differentialoperates D 21 0,1 220,13 ft f

Consider 11.110 on and C Then D is linear

but not continuous

Consider 1111111 If 11g If'll on C With this

norm D is continuous and bounded



 

sure Dualspace



Dual space

Demon v us T V F called a fational
Given a vector space V the algebraic bact consists

of all linear functionals on V

Vt L V F

If V is a normed V5 then the space of all linear

continuous functionals from V to F is called the

topological dual space of V



Reward If Vis limits dim then Vt V beause then linear

mappings are always continuous In general this is not true

We endow the dual space with the operator worm

t iii

V is a vector space and the operator worm is

Puffed a normon v

Prof If V is a normed VS but not necessarily complete

then I with the operator worm is a Banach space



Examples

K C IR compact set E K space of cont fats

with 11 110 then ECKI is equivalent to

the space M K the space of all Radon measures

our K

S C IR measurable set 1 p o q such
that

It 1 Then the dual of Lp S is given

as
9 s



Riesz representation theorem

Theory A Hilbert space It its dual Then the

mapping Q H H y c y

is bijective isometric and satisfies tx I 0 y

Stated differently for any mapping E H there exists

a unique y e H such that x Ct y



Adjointoperatorf



Definition

Def Let Te L Hr Hc Hr H2 Hilbert spaces Then

there exists an operator Tt He He such that

Tx y 742 x Tty an

for all e Hn y eHz It is called the adjoint of

Renal the existence of this operator is a consequence

of the Riest representation theorem

Def An operator T H He is called self adjoint

if Tx y Cx Ty


