

Definition of a group

•
$$S_n := \left\{ T : \left\{ A_{1}, \dots, n \right\} \rightarrow \left\{ A_{1}, \dots, n \right\} \mid T \text{ it bijective} \right\}$$

• $S_n * S_n \rightarrow S_n \quad T_n \circ T_2 \quad (i) = T_n \quad (T_2 \quad (i))$
 $(S_n , \circ) \quad ir \quad proup.$

Definition of a field

Examples of fields

•
$$u \in \mathbb{Z}_{i}$$
 Consider $\mathbb{Z}_{n} := \{0, 1, \dots, u-1\}$
 $a \neq_{n} b := (a + b) \mod n$
 $a \neq_{n} b := (a \cdot b) \mod n$
Then $(\mathbb{Z}_{n}, \neq_{n}, \cdot_{n})$ is a field if and only if
 u is prime.

Kohvahon

we are not going to use a lat of nother of complex number, but at least need them to factorize polynomials.

Hur we the very basics :

Quadrohic equations aver R

$$ax^2 + bx + c = 0$$

lu solution pour leaved Mir formula:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

It ver solutions in Rif 6?-hae 20, Muwire it doesn't. Auvoying!

Def A comblex number is a number of the form
$$a + bc$$

where $o_1 b \in \mathbb{R}$. We call a the real part and b the
imaginary part of the number. Write C for the space of
all ouch number: $C = \int a + cb | a, b \in \mathbb{R}^2_{2}$.

Obruve: C is a field.

Ausdrahic equations over C

Couriedus the quadretic equation ogain:
$$a x^2 + bx + c = 0$$
.
Obseure that it now always has a solution in C :
 $x_{n_{12}} = \frac{-b \pm \sqrt{b^2 - 4ac^2}}{2a}$

Gak 1:
$$b^2 - 4oc \ge 0$$
. Here $x_{n,2} \in \mathbb{R}$ or usual.
Core 2: $b^2 - 4oc \ge 0$. Then can write
 $\sqrt{b^2 - 4ac} = \sqrt{-n(4ac - b^2)} = \sqrt{n} \cdot \sqrt{4ac - b^2}$
 ≥ 0

= i.r where r= Vhar-b? GR.

Fundamental thesam of algebra

Mearin :

$$a_0 \neq o_1 \times \neq \dots \neq o_n \times = \alpha_n (x - \gamma_n) (x - \gamma_2) \dots (x - \gamma_n)$$

Outooh

Dealing with complex number is a rich field in mothematice, but we will not houch it ...

Vector space

Définition of a vector space

Def Let F be a field with rd. elements 0 and 1.
A vector space over the field F in a title set V with a
mapping
$$\star: V \times V \rightarrow V$$
 ("vector addition") and a myping
 $\cdot: F \times V \rightarrow V$ ("realar multiplication") rach that:
(VA) (V, \star) is a commutative group.
(V2) Hultiplicative identify: $\forall v \in V : A \cdot v = v$
(v3) Distribution properties: $\forall a, b \in F \quad \forall u, v \in V$
 $a \cdot (u + v) = a \cdot u + a \cdot v$
(a+b) $u = a \cdot u + b \cdot u$

Elements of V on called vectors, elements of Fore called scalors.

Examples of vector spaces

• Function praces:
•
$$\mathbb{R}^{\chi} := \{f: \chi \rightarrow \mathbb{R}^{\chi}\}$$
 the space of all real valued form
on a set χ . Define:
 $f: \mathbb{R}^{\chi} \times \mathbb{R}^{\chi} \rightarrow \mathbb{R}^{\chi}, \quad (f \neq g)(\chi) := f(\chi) \neq g(\chi)$
 $\cdot : \mathbb{R} \times \mathbb{R}^{\chi} \rightarrow \mathbb{R}^{\chi}, \quad (\chi \cdot f)(\chi) := \chi \cdot (f(\chi))$
Here $(\mathbb{R}^{\chi}, +, \cdot)$ is a real vector space.

Subspaces

Linear combinations

Notation:

$$span(u_{1,\dots,1}u_{n}) := \left\{ \begin{array}{c} u \\ z \\ z = 1 \end{array} \right\} \downarrow u_{i} \mid \lambda_{i} \in F_{j}^{2}.$$

Linear indépendence

Det A set of vectors variable is called linearly independent
if the following holds:

$$\sum_{i=1}^{n} J_i v_i = 0 \implies J_1 = \dots = J_n = 0.$$
Examples: The vectors $\binom{1}{0} I\binom{2}{1}\binom{2}{1}\binom{4}{1} \in \mathbb{C}^3$ are lin. indep.
The functions sinces and cos (x) $\in \mathbb{R}^{R}$ are lin. i.d.
The functions sinces and cos (x) $\in \mathbb{R}^{R}$ are lin. i.d.
They set has contains the 0-vector is not bin. indep.

Reducing a set to a basis

He word. King and and a service of the service of

Proof rhetch

· If It is already lin. independent: done.

Finik-dim vector space

Extending a set to a basis

Dimension of a vector space

Linear mapping

$$\frac{\mathcal{D}ef}{\operatorname{pred}} T \in \mathcal{X}(\mathcal{U}_{1}V). \text{ Then hernel of } T \left(\underbrace{\operatorname{null space}}_{is \ defined \ as} \\ \text{her } (T) := \operatorname{null}(T) := \left\{ \operatorname{u} \in \mathcal{U} \mid Tu = 0 \right\} \subset \mathcal{U} \\ \text{The range of } T \left(\underbrace{\operatorname{image}}_{rauge} \circ T \right) \quad is \ defined \ as} \\ \operatorname{range}(T) := \operatorname{lm}(T) := \left\{ \operatorname{Tu} \mid u \in \mathcal{U} \right\} \subset V$$

Proof: Exercise.

$$\frac{\partial ef}{\partial ef}: V' \subset V, V' aug set. The pre-image $\partial f V'$ is defined as
 $T^{-n}(V') := \left\{ u \in U \mid Tu \in V' \right\}.$$$

Fundamental Kiesrem for linear happings

Theorem: Let V be finite-dim, W any VS, T
$$\in \mathcal{L}(V, w)$$
.
Let $u_{1,\dots,1}u_{n}$ be a basis of her $(T) \subset V$
Let $w_{1,\dots,1}w_{n}$ be a basis of range $(T) \subset W$.
Let $u_{1,\dots,1}w_{n}$ be a basis of range $(T) \subset W$.
Let $u_{1,\dots,1}u_{n}$ $u_{n} \in T^{-1}(w_{n})$. Then
Then $u_{1,\dots,1}u_{n} \in T^{-1}(w_{n})$. Then
 $u_{1,\dots,1}u_{n} \in V$ form a basis of V.
In publicular, $dim(V) = dim(her(T)) + dim(range(T))$.

$$\frac{Shy \Lambda: V \subseteq Span \left\{ u_{1}, \dots, u_{n}, \frac{2}{2}, \dots, \frac{2}{m} \right\}$$
Let $v \in V$, cousides $T v \in range (T)$.

=> $\exists A_{1}, \dots, A_{m}$ s.t.

 $T v = A_{1} w_{1} + \dots + A_{m} w_{m}$

= $A_{1} T(\underline{e}_{1}) + \dots + A_{m} T(\underline{e}_{m})$

= $T (A_{1} \underline{e}_{1} + \dots + A_{m} \underline{e}_{m})$

=)
$$\overline{I}v - T(A_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta}) = 0$$

= $T(v - (A_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta}))$
= $E(v - (A_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta} \hat{\epsilon}_{\eta}))$

=)
$$\exists \mu_{1},...,\mu_{n}$$
 s.t. $V - (\lambda_{1} \epsilon_{1} + ... + \lambda_{m} \epsilon_{m}) = \mu_{1} u_{1} + ... + \mu_{n} u_{n}$
=) $V = \lambda_{1} \epsilon_{1} + ... + \lambda_{m} \epsilon_{m} + \mu_{n} u_{1} + ... + \mu_{n} u_{n}$

Shp 2:
$$u_{1,m}, u_{m}, z_{1,m}, z_{m}$$
 and lin. indep.
A snume that $p_{n}, u_{n}, z_{1,m}, u_{m} + \lambda_{1}z_{1} + \dots + \lambda_{m} z_{m} = 0$ (C)
 $\lambda_{1}, \omega_{n} + \dots + \lambda_{m}, \omega_{m} - \lambda_{1} T(z_{1}) + \dots + \lambda_{m} T(z_{m})$
we add number $= \lambda_{1} T(z_{1}) + \dots + \lambda_{m} T(z_{m}) + p_{n} T(u_{n}) + \dots + p_{n} T(u_{n})$
here is 0
(because in hund)
 $= 0$
 $zyllait$
 $(u_{1}, u_{1}, \dots + \lambda_{m}, \omega_{m} + p_{1}, u_{1} + \dots + p_{m} U_{m}) = 0$
 $= 0$ by (C)
 $= 0$

=> p1 41 * --- * pn 4 = 0 by @

=> p1 =... = pn = 0 berande an..., an basis.

Prosf Direct consequence of theorem. (can you for why? Exercise!)

Matrices

$$V = \lambda_{1}v_{1} + \dots + \lambda_{n}v_{n} \text{ arbitrary vector}$$

$$\Gamma(v) = T(\lambda_{1}v_{1} + \dots + \lambda_{n}v_{n})$$

=
$$\lambda_n T(v_n) + \dots + \lambda_n T(v_n)$$

• For basis vector
$$v_j$$
, we can represent the image $T(v_j)$
in basis w_1, \dots, w_m :
Here with coefficients a_{nj}, \dots, a_{mj} s.t.
 $T(v_j) = a_{nj}, w_1 + \dots + a_{mj}, w_m$

• We now shark these coefficients in a matrix called M(T):

mrows,
one for each
basis vechs
of w

$$a_{mn} = -a_{mj}$$

 $a_{mn} = -a_{mj}$
 $a_{mn} = -a_{mn}$
 $a_{mj} = -a_{mn}$

matrix of mapping T
= with aspect to
He bases

$$v_1, ..., v_n$$
 of V
 $w_1, ..., w_m$ of W.

· The result of T(v) can now be expressed by a matrix-vector multiplication:

 $T(v) = \sum_{j=0}^{n} \lambda_{j} T(v_{j})$ $= \sum_{i=1}^{\infty} \lambda_{i} \sum_{i=1}^{\infty} \alpha_{ij} W_{i}$ $= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \lambda_{j} \right) \omega_{i}$ (M. (in)) i i-theating of product of matrix M with vector A

Natation por matrices of linear moys

Notation Let T: V-> W be linear, let & a bank of V, & basis of W. We denote by M(T, D, E) the matrix corresponding to T with back & and C.

$$M(S+T) = M(S) + M(T)$$
$$M(S) = \lambda M(S)$$

•
$$T: U \rightarrow V, S: V \rightarrow W$$
 linear then
 $M(S \circ T) = M(S) \cdot HCT)$

$$\frac{Def}{diver a watrix} A = (a_{ij}) \in F^{M\times n} Me$$

$$\frac{def}{diver a watrix} ir give ar
(A^{t})_{kj} = A_{jk}$$

$$Wohahien: A^{t}, A^{l}$$

$$H = C_{l} Her He conjugat transpose watrx ir
$$\frac{defind ar}{(A^{*})_{ij}} = \overline{a_{ji}}$$$$

Det Assame that we have
$$U_1$$
, U_2 subspaces of V.
The sum of the two spaces is defined as
 $U_1 + U_2 := \int U_1 + U_2 | U_1 \in U_1, U_2 \in U_2$
The sum is called a direct sum, if each element
in the sum can be within in exactly our ways.
Notation: $U_1 \oplus U_2$

Complement of a subspace

$$W = spau \{ W_{1}, \dots, V_{m} \}.$$

Invorse of a linear map

Pef TG
$$\mathcal{X}(V, W)$$
 is called involve if twe withs
a hinton map $S \in \mathcal{X}(W, V)$ such that
 $S \circ T = J d_V$ and $T \cdot S = J d_W$
The map S is called the involve of T , denoted by T^{-1} .

Characterizing invertability
Prop A linear my is invertable iff it is injective and
runjective.
Proof "=> " Invertible => injective:
support
$$T(mV=)$$
 $T(r)$. Then $u = T^{-1}(T(u))$
 $= T^{-1}(Tr) = V$ => injective
Invertible => runjective:

Consider w FW. Then

$$w = T (T^{-1}(\omega)) = w \in roup t T$$

=> $rurjectu.$

hver matri

Det A square matrix
$$A \in F^{n\times n}$$
 is involved if there exits
a square matrix $B \in F^{n\times n}$ such that
 $A \cdot B = \mathbf{S} \cdot A = \mathbf{J} \mathbf{d} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

The matrix B is called the inner matrix, and is denoted by A⁻¹.

Prop The inverse matrix represents the inverse of the corr. lin.
wpp, that is:
$$T:V \rightarrow V$$

 $M(T^{-1}) = (M(T))^{-1}$
matrix of (inverse up) inverse antrix (of the original matrix)
lu perficular, a matrix is invertible iff the corr. my
is invertible.

Post: Exorise.

Properties of inverse matrices

•
$$(A^{-1})^{-1} = A_{1}$$
 $(A \cdot g)^{-1} = g^{-1} \cdot A^{-1}$

•
$$A^{t}$$
 invertible (=> A invertible,
 $(A^{t})^{-\Lambda} = (A^{-1})^{t}$

• The set of all invehible matrices is ralled general
linear groups
$$GL(u, F) = \left[A \in F^{u \times u} \middle| A invehible\right]$$

Representing the identity

Counider the identity upping
$$J: V \rightarrow V$$
, $x \mapsto x$.
Assume we fix a basis of V (both in source and hoget
space), then the corr. matic looks as follows:
 $M(J, B, B) = \begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix}$

Now countide
$$\mathcal{A} = \{a_{1}, ..., a_{n}\}$$
 and $\mathcal{B} = \{b_{1}, ..., b_{n}\}$ both
bases on V . How does the matrix of the id. mapping
 $\mathcal{J}: (V, \mathcal{A}) \rightarrow (V, \mathcal{B})$ took like?

$$a_1 = t_{11} b_1 + t_{21} b_2 + \dots + t_{n_1} b_n$$

Now we form the corr. matrix
$$T$$

 $T = \begin{pmatrix} t_{1n} & \cdots & t_{nn} \\ \vdots & \vdots \\ \vdots & \vdots \\ t_{nn} & \cdots & b_{nn} \end{pmatrix}$

Ther watrix reprosents the lolashity mapping:

• Le lie basis it, the first basis rechanged in the matrix $\begin{pmatrix} A \\ O \\ \vdots \\ O \end{pmatrix}$. $a_1 = 1 \cdot a_1 + 0 \cdot a_2 + 0 \cdot a_3 - + 0 \cdot a_N$

•
$$T \cdot \begin{pmatrix} i \\ i \\ i \end{pmatrix} = \begin{pmatrix} t_{n_1} \\ t_{n_2} \\ \vdots \\ t_{n_n} \end{pmatrix}$$
 illis rector gives us Ta_n
expressed in basis B

•
$$t_{11} b_1 \tau \dots \tau t_{u_1} b_n = \alpha_q$$

$$T \alpha_1 = \alpha_1$$
.

•

Change of basis is invehilde

Prost Exercise / shipped.

Change of basis pr an orbitrary mapping
Prop Let
$$\mathcal{X}_{1}$$
, \mathcal{B} be two basis of V. Couriely the transformation matrix
 $A = \mathcal{M}(\operatorname{Jd}_{1}, \operatorname{Ut}_{1}, \overline{\mathbf{I}})$, and $A^{-1} = \mathcal{M}(\operatorname{Jd}_{1}, \frac{\mathcal{B}_{1}}{\mathcal{B}_{1}}, \underline{\mathbf{I}})$.
Let $T: V \rightarrow V$ linear, and $\overline{X}_{1} = \mathcal{M}(\overline{T}_{1}, \operatorname{Ut}_{1}, \underline{\mathbf{I}})$. Then
 $\overline{Y}:= A \cdot X \cdot A^{-1}$ represents \overline{T} in basis \mathcal{B}_{1} , that is
 $Y = \mathcal{M}(\overline{T}_{1}, \underline{\mathcal{B}}_{1}, \underline{\mathbb{P}})$.

Rauh of a matrix

$$\frac{P_{rop}}{T \in \mathcal{Z}(V, W)}. \text{ Then rough } (M(T)) = \dim (range (T)).$$

Proofs: shipped

The determinant

Leohiv-hion b study the determinant: geometry! Counter the standard basis of \mathbb{R}^3 : $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Counter a linear suppling that just stretches these vectors: $T = \begin{pmatrix} *1 & 0 \\ 0 & -\frac{1}{2} \\ 0 \end{pmatrix}$ let U be the unit cube and P = T(U) its mapping. The volume of P in them $A_1 \cdot A_2 \cdot A_3$

Wout to define a quantity "det" that tells us how volumes change under arbitrary linear wappings.

Which properties would ruch a mapping of bare to ratify?
• vol (us = 1, ro or would like that
$$d(J) = 1$$
. D?
• $T = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ with report to standard basis => $d(T) = x_1 \dots x_n$
• $D = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ with report to standard basis => $d(T) = x_1 \dots x_n$
• $D = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ with report to standard basis => $d(T) = x_1 \dots x_n$
• $D = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ with report to standard basis => $d(T) = x_1 \dots x_n$
• $D = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ with report to standard basis => $d(T) = x_1 \dots x_n$
• $D = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ with report to standard basis => $d(T) = x_1 \dots x_n$
• $D = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ with report to standard basis => $d(T) = x_1 \dots x_n$
• $D = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ with report to standard basis => $d(T) = x_1 \dots x_n$
• $D = \begin{pmatrix} A_n \\ A_n \end{pmatrix}$ when volume is D_n hence we could like
 $d(U) = 0$. $A = D = \begin{pmatrix} D \\ D \end{pmatrix}$

Definition of the determinant

(DA) d is linear in each column of the matrix:
Let A be a matrix with column
$$a_{1,...,an}$$
. (an appendix column a_{i} , assume $a_{i}^{-} = a_{i}^{-} + a_{i}^{-}$ for
Some a_{i}^{+} , $a_{i}^{-} \in F^{u \times A}$. Then it holds that
 $det ((a_{1},...,a_{i})) =$
 $det ((a_{1},...,a_{i}) + det ((a_{1},...,a_{i}))$
 $det ((a_{1},...,a_{i})) = 1 \cdot det ((a_{1},...,a_{i}))$

(D2) dis alternating: if A has two identical columns,
then det
$$A = 0$$
.
(93) d is normed: det $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} = 1$.

Existence and uniqueners

Theorem : The mapping of exists and is unique.

Prosf: Shipped

Properties of the determinant

Barred on (D1), (D2), (D3) we rav now prove many important properties of the alternationant:

• The determinant of an linear wapping does not depend on the basis.

• det
$$(c \cdot A) = c^n det(A)$$

$$det (A \cdot B) = (det A) \cdot (def B)$$

$$det (A^{t}) = def(A)$$

• det
$$(A^{-1}) = 1/det(A)$$
 (if A is investible)

-> cont.

• det
$$(A+B) \neq det(A) + det(B)$$

•
$$l \neq A$$
 is upper triangular, High is

$$A = \begin{pmatrix} \lambda_{1} & \star \\ 0 & \lambda_{n} \end{pmatrix}$$

$$\frac{S_{perial \ \alpha hg}}{\frac{n-1}{2}} = \frac{det}{\left(a\right)} = a$$

$$\frac{n-2}{\frac{n-2}{2}} = \frac{det}{\left(a_{2n} - a_{22}\right)} = a_{1n} \cdot a_{22} - a_{12} \cdot a_{21}$$

$$\frac{n-3}{\frac{n-3}{2}} = a \cdot det \left(a + b - c - b \cdot det \left(a + b - b \cdot det \left(a + b - c - b \cdot det \left(a + b - b - b \cdot det \left(a + b - b - b \cdot det \left(a + b - b - b - det \left(a + b - b - b - det \left(a + b - b - b - det \left(a + b - b - b - det \left(a + b - b - b - det \left(a + b - b - b - det \left(a + b - b - b - det \left(a + b - b - b - det \left(a + b - b - det \left(a + b - b - det \left(a + b - b - b - det \left(a + b - b - det (a + det (a +$$

Alternative definition of determinant Three exists a more straight-proved definition of det. However, starting from this definition, proving the geometric properties is more combersome.
· LU de composition:

Aug matrix A can be written as a product

$$A = L \cdot U$$
where L is a lower triangular matrix and U upper triangular:

$$L = \begin{pmatrix} l_{n_1} \\ l_{22} \\ \vdots \\ l_{nn} \end{pmatrix}, \quad U = \begin{pmatrix} u_{n_1} \\ \vdots \\ 0 \\ u_{nn} \end{pmatrix}$$

$$det (A) = det (L \cdot u) = det (L) \cdot det (u) =$$

$$= \begin{pmatrix} n \\ lie \end{pmatrix}, \quad (n \\ m \\ i=n \\ i=n$$

Geometric inherition ogain
Heorem: Conside an use matrix A with columns
$$(a_1 | a_2 | \dots | a_n) = A$$
.
Generic Remain where $U = [c_n e_1 + \dots + c_n e_n | 0 \le c_i \le A]$ and its
inage P under the mapping A:
 $U \longrightarrow P := \{c_n a_1 + \dots + c_n a_n | 0 \le c_i \le A\}$ parathelotope.
Then old (A) gives us the (signed) volume of P
Proof (for general watrices $A!$): subject.

Applications to integrals

Proposition:
$$\mathcal{Q} \subset \mathcal{R}^{h}$$
 open result, $\sigma: \mathcal{I} \to \mathcal{R}^{h}$ differentiable (
 $f: \sigma(\mathcal{R}) \to \mathcal{R}$. Then:
 $\int f(\gamma) d\gamma = \int f(\sigma(x)) | det(\sigma'(x)) | dx$
 $\sigma(\mathcal{R})$

volume

element

 $derivative (incor)$

Another orcurrence of the det in ML

deusity of the multivariate Gaussian:

$$p(k) = \frac{\Lambda}{(2\pi)^{d/2}} \qquad \frac{\Lambda}{d(z)} \qquad e_{\ell}(-\frac{\Lambda}{2}(x-p)\overline{Z}(x-p))$$

$$(2\pi)^{d/2} \qquad d_{\ell}(z)^{1/2} \qquad d_{\ell}(z)^{1/2} \qquad e_{\ell}(-\frac{\Lambda}{2}(x-p)\overline{Z}(x-p))$$
normalization hav related to the volume, rollow

duraity integrates to 1 in the and

Geometric intuition

• If
$$\Lambda$$
 is an eigenvalue, it has many eigenvectors!
For example, if V is eigenvector, then also
 $a \cdot V$ ($a \in K$) is an eigenvector!
 $T(a \cdot V) = a \cdot T(V) = a \cdot A \cdot V = A(a \cdot V)$

$$\frac{Theorem}{VS V} = Every operator T: V \rightarrow V = a furtheredian, complex (1)
VS V has at least one eigenvalue.
$$\frac{Frost}{VS V} = Ut n = dim V. Chosse a vector v = V, v \pm 0. Then the set
\frac{Shep 1:}{V, TV, T^2V, ..., T^NV}$$

$$\frac{Frontial}{V, TV, T^2V, ..., T^NV}$$

$$\frac{Frontial}{VS V} = V = Uinewilly defendent (it consists of una vectors in
on u-dim space). Find coefficients a0, a1,..., au such that
$$p(T) := a_0 V + a_1 TV + ... + a_u T^NV = 0.$$

$$Now we want to stard that we can forborize their
"poly normial of operators":
$$a_0 + a_1 T + a_2 T^2 + ... + a_u T^M$$

$$\frac{1}{=} c (T - A_1 E) (T - A_2 E) ... (T - A_w E).$$$$$$$$

The p2:
(actionables)
Excerption b complex-valued polynomials:
(actionables)
Guarides a polynomial on C with these coefficients:

$$p(z) := a_0 + a_1 \cdot z + \dots + a_n z^n \leftarrow n \text{ and } m \text{ can be differents}$$

 $p(z) := a_0 + a_1 \cdot z + \dots + a_n z^n \leftarrow n \text{ and } m \text{ can be differents}$
 $p(z) := a_0 + a_1 \cdot z + \dots + a_n z^n \leftarrow n \text{ and } m \text{ can be differents}$
 $p(z) := c \cdot (z - A_n) (z - A_2) \dots (z - A_m)$
Not difficult to see Khat are can them also for basize $p(T)$:
 $p(T) = a_0 + a_1 T + \dots + a_m T^n$
 $= c \cdot (T - A_1 E) (T - A_2 E) - (T - A_m E)$

Solynowials of operators
Let
$$p(x) = \sum_{i=0}^{n} a_i x^i$$
 be a polynowial.
For a linear operator T, define $P(T) := \sum_{i=0}^{n} a_i T^i$
Then the following properties ensure that "factorization" coorder:
Let $p_i q$ be two polynomial. Then:

If the polynomial factorizes, ro does the related operator:
 $(p \cdot q)(T) = p(T) \cdot q(T)$
Order of factors does not wate:
 $p(T) \cdot q(T) = q(T) \cdot p(T)$.

Noreon, if $p(T) \cdot q(T) v = 0 = 0$

Diagonalizable matrices

٠

$$H(T, \mathcal{B}, \mathcal{B}) = \begin{pmatrix} \lambda_{1} & \mathcal{O} \\ \mathcal{O} & \lambda_{n} \end{pmatrix}$$

Triangaler matrices

Geometric intuition

When are triangular matrices invotible?

$$\begin{pmatrix} \lambda_n & & \\ & \ddots & \\ & & \ddots & \\ & & \ddots & \end{pmatrix}$$

faerq

Proof
$$\leftarrow$$
 ": Let $v_{1},...,v_{n}$ the basis for cluic T is upper-triangular,
Arrune all $\lambda_{i} \neq 0$.
By triangular form, $\forall v_{1} = \lambda_{1}v_{1} \neq 0$, thur $v_{1} \in range(T)$.
By triangular form, $\forall v_{2} = a_{1}v_{1} \neq \lambda_{2}v_{2}$ for some scalar a .
By triangular form, $\forall v_{2} = a_{1}v_{1} \neq \lambda_{2}v_{2}$ for some scalar a .
Erappe T erange (T), and because $\lambda_{2} \neq 0$,
Hun also $v_{2} \in range(T)$, and because $\lambda_{2} \neq 0$,
Hun also $v_{2} \in range(T)$. etc
. In this way, we can see that $v_{1},...,v_{n}$ are all in range (T).
. Fluer T surjective, thus hijective, thus invertible.

Entries of diagonal are eigenvalues

Fix any ref and consider T-2J:

$$T = \begin{pmatrix} \lambda_n & \# \\ 0 & \lambda_n \end{pmatrix}, \quad T - \lambda] = \begin{pmatrix} \lambda_n - \lambda & \# \\ 0 & \lambda_n - \lambda \end{pmatrix}$$

Ę

Meebraic multiplicity of eigenvalues

Over C roch matrix can be triangularized

Proof idea as an image:

- · split off the part of the space that belongs to eigenvertors for A
- Ou remainder le opply induction hypothesis
- Then add any basis for eig (1) and show that it does not destroy upper-trious. form.

ML heywords : loss functions, regularizers, sparaity,

Metric space

$$\frac{Definition}{d(x,y)} : Let x be a set. A function $d: X \in X \to \mathbb{R}$
is called a metric if the following conditions holds:
 $\forall u_i v_i w \in X$
(A) $d(x_i \cdot y) > 0$ if $x \neq y$ and
 $d(x, x) = 0$
(2) $d(x_i \cdot y) = d(y_i \cdot x)$ (py muscly)
(3) $d(u_i \cdot v) \neq d(u_j \cdot w) \ge d(u_i \cdot w)$$$

Norm ou a vector space

Euclideau norm ou Rd

Every norm induces a metric :
$$d(x,y) := ||x - y||$$

But not vice versa (by to find a counter-example!)

p-Vorms ou Rd

Def Counide V> R^d. Define
$$\|\cdot\|_{p} : R^{d} \to R_{1}$$

 $\|x\|_{p} := \left(\sum_{i=1}^{d} |x_{i}|^{p}\right)^{A_{ip}} |_{br} 0 \leq p \leq \infty$
uot define
 α more The map $p=2$ coincides with the Euclidean norm.
For the map $p=2$ coincides with the Euclidean norm.
 $X = \left(\sum_{i=1}^{M} |G|\right)^{A_{ip}} |_{coincides} = Max |_{x_{i}} |_{coincides} = \left(\sum_{i=1}^{M} |G|\right)^{A_{ip}} |_{coincides} = \left(\sum_{i=$

Unit ball of a vorm

The with ball of a norm is the
set of points such that norm
$$\leq \Lambda$$
:
 $B_p := \left\{ x \in \mathbb{R}^d \mid \|x\|_p \leq 1 \right\}$

The wit sphere is the set of points such that uprov =
$$\Lambda$$
:

$$S_r := \{x \in \mathbb{R}^d \mid \|x\|_p = 1\}$$

Ullustration: unit balls on \mathbb{R}^2 p=1:(convex balls) p=2 p=5 $p=\infty$

$$\left(\sum_{i=1}^{n} \left[x_{i} + \gamma_{i}\right]^{p}\right)^{n} \leq \left(\sum_{i=1}^{n} \left[x_{i}\right]^{n}\right)^{n} + \left(\sum_{i=1}^{n} \left[y_{i}\right]^{p}\right)^{n}\right)^{p}$$
Equivalent norms (definition)

Definition: Let V be a vector space and
$$\|\cdot\|_{\alpha}$$
 and
 $\|\cdot\|_{b}$ two norms on V. Then the two norms are
ralled (topologically) equivalent if there exist
roustants $\alpha, \beta > 0$ such that
 $\forall x \in V: \|x\|_{\alpha} \leq \|x\|_{b} \leq \beta \cdot \|x\|_{\alpha} \ll$

 \rightarrow

First inequality:
$$\exists c_1 > 0$$
: $\forall x \quad \|x\| \leq c_1 \, \|x\|_{\infty}$
Let $x = \sum x_i e_i$ the representation of x in the
shoundard booris of \mathbb{R}^d .
 $\|x\| = \|\sum_{i=1}^d x_i e_i\|$
 $\leq \sum_i \|x_i e_i\|$
 $\leq \sum_i \|x_i\| \|e_i\|$
 $\leq \|x\|_{\infty}$ $\leq \|x\|_{\infty}$ $\leq \|e_i\|$
 $= \|x\|_{\infty} \leq \|e_i\|$
 $= \|x\|_{\infty} \leq \|e_i\|$

Second inequality:
$$\exists c_2 > 0 \quad \forall x \quad || x ||_{\mathcal{D}} \leq c_2 \cdot || x ||$$

Let $S := \{x \in \mathbb{R}^d \mid || x ||_{\mathcal{D}} = A\}$ be the unit ophere with $||_{\mathcal{D}}$
Consider $f: S \rightarrow \mathbb{R}$, $x \mapsto || x ||$.
The mapping f is continuous with $h \cdot h_{\mathcal{D}}$:
(this phows directly from the fact that
 $|| f(x) - f(y)| = || x || - || y || ||$
 $\leq || x - y || \leq c_1 \cdot || x - y ||_{\mathcal{D}}$).
The S is cheed and bounded, thus by Theorem of
 $|| twine - Barel, S - compact.$ Any continuous mapping
or a compact set falses its win and wax.
 $\widetilde{c}_2 := \min \{f(x) \mid x \in S\}$

• Because
$$O \notin S$$
 (spher, not ball), we can conclude from the definitioners that $\tilde{c}_2 \neq 0$.

Scalar product

$$\frac{DeL}{(Surridus vechs space V. A mapping <., .): V*V -> R}$$
is relled a scalar product if
$$\lim_{x_1 < x_2 < y > x_1 < x_1 < y > x_1 < x_2 < y > x_1 < x_1 < y > x$$

positive
$$(S4) < x_1 x_2 > 0$$

definite $(S5) < x_1 x_2 > 0 <-> x = 0$

• Euclidean real product on
$$\mathbb{R}^{4}$$
; $x = \begin{pmatrix} x_{4} \\ i \\ x_{n} \end{pmatrix}, y = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$
 $\langle x_{1} y \rangle = \sum_{i=1}^{n} x_{i} y_{i}$

• Ou
$$\mathbb{C}^n$$
, $\langle x_i Y \rangle = \sum_{i=1}^n \overline{Y_i}$

Scalar product and angles
Prop Countries the standard scalar product on
$$\mathbb{R}^{M}$$
. Then
 $\langle v_{1}w \rangle = \|v\| \|w\| \cos(\alpha)$
where α is the angle enclosed by v and w .
Proof \cdot in a general triangle we have
 $\|v-w\|^{2} = \|v\|^{2} + \|w\|^{2} - 2\|v\|\|w\| \cos \alpha$
 $\cdot \|v-w\|^{2} = \|v\| + \|v\| \cos(\alpha)$.

Banach and Hilbert paces

Relationship between norm and maler moduct

Relationship between norm and metric

Consider a VS V with norm
$$\|I \cdot \|$$
. Then
 $d: V \times V \rightarrow \mathbb{R}$, $d(x_{rT}) := \|X - y\|$
is a metric on V, the metric induced by the norm.

The olar direction does not work in peneral, C Can you find a countrecample?)

Cauchy - Schwarz inequality:

$$| \angle u_1 v_7 | \leq \| u \|_2 \| v \|_2$$

Hölder inequality:
 $| Lef p_1 q \ge \Lambda \quad with \quad \Lambda p \neq \Lambda q = \Lambda.$ Then:
 $| \angle u_1 v_7 | \leq \int_{i=\Lambda}^d | u_i v_i | \leq \| u \|_p \| \| p \|_q$

Orthogonal vectors and sets

• Two vectors
$$v_1, v_2 \in V$$
 are called orthogonal if $\langle v_1, v_2 \rangle = 0$.
Notation: $v_1 \perp v_2$

• Two sets
$$V_{1}$$
, $V_{2} \subset V$ on raked or husgonal if
 $\forall v_{1} \in V_{1}$, $\forall v_{2} \in V_{2}$: $\langle v_{1}, v_{2} \rangle = 0$

Orthonormal rectors and reb

Def:

· Two vectors v, v2 are called or the usermal if they are arthogonal and additionally the two rectors have vorm 1: . < V1, V2 ? = O . Il vali = 1 , Il vali = 1 • A pet of vectors v1, v2, ..., vn ir called orthouse wal if any two vectors are orthonormal.

Orthogonal/orthonormal basis

Preposition: la au orthousermal basis
$$u_{1,...,u_{n}}$$
,
the representation of a vector V it given as
 $V = \sum_{i=1}^{n} \langle v_{i} u_{i} \rangle U_{i}$

I We shill don't know whether an orthonormal baris always exists...

Projection (general rase)

A G Z (V) is raked a projection if A² = A. DeE

blue vector sets projected ou red Acht vector (aot or the found)

Or Huogonal projection

Proof idea: Let
$$u_{n_1\cdots,n_k}$$
 be an orthogonal basis of \mathcal{U} .
Selvice $p_{\mathcal{U}}: \mathcal{V} \rightarrow \mathcal{U}$ by $p_{\mathcal{U}}(w) - \sum_{i=n}^{k} \frac{\langle w, u_i \rangle}{u_{n_i} | u_i \rangle}$
Obviously:
• $p_{\mathcal{U}}$ linear
• $w \in \mathcal{U}^+$
=) $p_{\mathcal{U}}(w) = 0$.

Untuition: iteration proceeder

$$\frac{Shpn:}{Npn:} u_n := \frac{v_n}{nv_n}, \qquad U_n := span \{u_n\}$$

$$\frac{Shpn:}{Nphe}: Assume knot we already identified u_n, ..., u_{k-n}.$$

$$\cdot Project v_k en U_{k-n} (v_k)$$

$$\cdot Project v_k - Pu_{k-n} (v_k)$$

$$\cdot Preuerwalize:$$

$$u_k = \frac{u_k}{Nw_k} \frac{u_k}{Nw_k}$$
Work r in Hierory (would used to prove that, dipped)

In practice, it quickly usultr in large numerical errors. ~> QR factorization, see later.

Orthogonal matrices, definition

Dec Let Q & M^{k,u} be a matrix with orthonormal (!) column vectors (wrt Enclidean scalar product). Then Q is called an <u>orthogonal (!) matrix</u>. If Q & C^{u,kn} and the columns or orthonormal (wrt the standard scalar product on Cⁿ), then it is called a <u>mithary matrix</u>.

Orkiggoual matrices, examples

• low tity:
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, Reflection: $\begin{pmatrix} 1 & 0 \\ 0 & -\lambda \end{pmatrix}$

· remutation af coordinates:
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• Robation in
$$\mathbb{R}^2$$
: $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

· Robahieu in R³:

• Robetten isout one of the axes:

$$R_{\Theta,\Lambda} = \begin{pmatrix} \Lambda & O & O \\ \Theta & \cos \Theta & -\sin \Theta \\ O & \sin \Theta & \cos \Theta \end{pmatrix}$$

Properties of orthousrunal matrices

Let Q be orthogonal. Then:

A Osmogonal rows and columns Consider the projection matrix $A = \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}$. The column are obviously not orthogonal. The rows formally satisfy that <(0), (2)> = 0. The populy that " nows or they anal (-> cols or they anal " does not hold here. But note that A is not an orthogonal matrix because the later regards all rows/wels to have norm 1 (in particular, also full rawh). The statement "rows or the goval and clours or the goval" drowly dous ust hold for artitrary matrices.

Skipped Representation of isometric uppings
Theorem Let
$$S \in \mathcal{I}(V)$$
 for a real $V \in V$. Then equivalent:
(a) S is an isometry: $\|S_V\| = \|V\|$ $\forall v \in V$
(b) there withs an orthonormal bosis of V such that
the matrix of S has the following form:

$$M = \begin{pmatrix} D & D \\ D & D \\ 0 & D \end{pmatrix}$$
where each of the libble blocks
• either is a dad matrix (\exists a real mumber) being Λ or $-\Lambda$
• or is a 2×2 notables with:
 $(cor \Theta - rin \Theta)$

Proof shipped.

Homitrau motices have real-valued eigenvalues and orthogonal eigenvectors

Proof •
$$\lambda$$
 eig. value of A with eigenvector x . They
 $\lambda \leq x_i \times 7 = \langle \lambda \times_i \times 7 = \langle A \times_i \times \rangle = \zeta$
 $= \langle x_i A \times 7 = \langle x_i \lambda \times 7 = \overline{\lambda} \leq x_i \times \gamma$
 $= \lambda = \overline{\lambda} \in \mathbb{R}$

project of scale prod. and

•
$$(\lambda_{n_{1}}, \kappa_{n_{1}})_{i} (\lambda_{2}, \kappa_{2})$$
 eigs of $A_{i}, \lambda_{n} \neq \lambda_{2}$. Then:
 $\frac{\lambda_{n} < \kappa_{1}, \kappa_{2}}{\lambda_{n_{1}} < \kappa_{2}} = \dots = \frac{\lambda_{2} < \kappa_{n_{1}}, \kappa_{2}}{\lambda_{2} < \kappa_{n_{1}}, \kappa_{2}}$

=> $0 = \lambda_{n} < \kappa_{1}, \kappa_{2} > -\lambda_{2} < \kappa_{n_{1}}, \kappa_{2} > =$
 $= (\lambda_{1} - \lambda_{2}) < \kappa_{n_{1}}, \kappa_{2} > =$
=> eikhw $\lambda_{1} = \lambda_{2}$
•r if $\lambda_{1} \neq \lambda_{2}$, kum $< \kappa_{1}, \kappa_{2} > = 0$
 $=) \kappa_{1} \perp \kappa_{2}$.

What can we conclude from here? • Each watrix & C^{n+y} has a eigenvalues & C • For homikay watrices & C^{n+y} all a eigenvalue now live in R • The aigenvectors shill might live in E^{n+y} (and not in R^{n+y})

Symmetric watrices
$$\in \mathbb{R}^{n\times n}$$
 are a special race of heuriteau,
(browse $A = A^{\pm} = \widetilde{A^{\pm}}$), so it also has a real-velocal
symmetric watrices. But the eigenvectors might shill live in \mathbb{C}^{n} .
$$\alpha_0 + \alpha_1 \times + \alpha_2 \times + \dots + \alpha_n \times m = M \times m \ge 1$$

=
$$C \left(\frac{x^{2} + b_{1}x + c_{1}}{2} \right) \dots \left(\frac{x^{2} + b_{M}x + c_{T}}{2} \right) \cdot \left(\frac{x - A_{1}}{2} \right) \dots \left(\frac{x - A_{N}}{2} \right)$$

#0 que droche tour that council times tours
be decomposed into times
tours;
in particular they ratisfy
 $b_{i}^{2} - 4c_{i}$ (otherwise one
could factorize them by the
que drachie formula)

$$Peplace \quad \text{the } x \quad \text{by } T:$$

$$O = (a_0 + a_n T + \dots + a_n T^n) V = (c(\dots - 1) (\dots - 1)) + V$$

$$quadt. \quad \text{lin. four}$$

Now can prove: the "quadratic oprotest" are invertible, (see (+) bebw). So we multiply the equation with Keir inverses and obtain

$$v \left(\mathbf{1}_{u} \mathbf{k} - \mathbf{T} \right) \dots \left(\mathbf{1}_{n} \mathbf{k} - \mathbf{T} \right) = \mathbf{0}$$

Because we had drown $V \neq 0$, at least one of the terms (T - di I)has to exist (i.e. $m \ge 1$) But then also the product $(T - d_1 I) \dots (T - d_m I)$ is not injective, thus at least one of the factors just injective, thus dj eigenvalue over R. In particular, the eigenvector lives in IR^m or well.

Proposition: Suppose T relf-adjoint and b, c GR satisfy
b² Z 4c. Then T² + bT + c I is invertible
Proof Intuition:

$$x^{2} + bx + c = \left(+ + \frac{b}{2} \right)^{2} + \left(c - \frac{b^{2}}{4} \right) > 0$$

 ≥ 0
 ≥ 0
 ≥ 0
 > 0 by or.
So $x^{2} + bx + c$ is on invertible red number.
Now do it: Consider any $V \neq 0$.
 $\leq (T^{2} + bT + c I) \vee, \vee) =$
 $= \leq T^{2} \vee, \vee) + b \leq T \vee, \vee) + c H \vee l^{2}$
 $= \langle T^{2} \vee, \nabla \rangle + b \leq T \vee, \vee) + c H \vee l^{2}$
 $= \langle T \vee l^{2} - |b| ||T \vee l| ||V||| = c f|V||^{2}$

(*)

Spectral theorem for symmetic / hemitian matrices <u>eorem</u>: A symmetric matrix $A \in \mathbb{R}^{n\times n}$ is orthogonality diagonalitable: Hur withs an arthogonal matrix $Q \in \mathbb{R}^{n\times n}$ and a diagonal matrix $D \in \mathbb{R}^{n\times n}$ s.t. Theorem : $A = Q D Q^{t} = \sum_{i=1}^{L} \lambda_{i} q_{i} q_{i}^{t}$ $\mathbf{J} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_n \end{pmatrix}, \quad \mathbf{Q} = \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_1 \end{pmatrix}$

Complex version of Mir theorem

(often vot ar relevant to HL ar the real version above)

Theorem A hermitian matrix
$$A \in C^{n\times n}$$
 is
unitarily diagonalizable: there white a unitary matrix U
and a diagonal matrix D sith.
 $A = U D U^{t}$
In particular, the white of D are real-valued.

Positive definite matrices

Positive definité matrices

Def A matrix A e R^{uxu} ir called
semi-definite (pd) if
$$b \times G R^{u}$$
, $x \neq 0$:
 $x^{t} A \times > 0$.
2
Def A matrix A is called a Gram matrix
if have reiters a set of vectors $v_{1,...,1}v_{n}$ r.th.
 $a_{ij} = \langle x_{i1}, x_{j} \rangle$.
Observe: On $C^{h,en}$, Gram matrices are humithian
 $On R^{a,en}$, Gram matrices are symmetric.

Characterization of pd matrices over C

Theorem:
$$A \in C^{new}$$
 hermitean. Then equivalent:
(i) A is prod (pol)
(ii) All eigenvalues of A are ≥ 0 (≥ 0)
(iii) The mapping $\langle \cdot, \cdot \rangle_i \in C^* * C^* \rightarrow C$ with
 $\langle x_i, \gamma \rangle_A := \overline{\gamma}^{\dagger} A \times$
satisfies all properties of a scale product
except one: if $\langle x_i, x \rangle_A = 0$ his does not
imply $x = 0$.
(iv) A is a Grown matrix of a vectors $a_{ij} = \langle x_{ij}, x_j \rangle$
which are not necessarily lies independent
which are lin. independent

Charactuization of symmetric, pd watics our R

To Do Add

Roots of prod matrices

Merrenn: Let
$$A \in \mathbb{R}^{nen}$$
 be symmetric, prod. Then there exists
 a matrix $B \in \mathbb{R}^{nen}$, B prod ruch that $A = B^2$,
Sometimes B is called the square root of A , sometimes de ushal
 as $B = (A)^{4/2}$.

Proof
• Spectral theorem =>
$$A = U D U^{t}$$
, $D = \begin{pmatrix} A_{n} & 0 \\ 0 & A_{n} \end{pmatrix}$
• prod => eigenvalues $A_{i} \ge 0$
• Define $\sqrt{D} := \begin{pmatrix} \sqrt{A_{n}} & \cdots & \sqrt{A_{n}} \end{pmatrix}$ and pet

Remark: more generally, oue can define A "Me par any kets. And browner are ran also define A-1 (in case pd) and A, one ran define A prg pr p.q E Z.

Important prod matrices for HL
• Consider a data matrix X E R^{uxd} : u data pts, of dims
• Then the matrix
$$C := X^c X \in \mathbb{R}^{d \times d}$$
 is called the
covariance matrix.

. All these methices are symmetric and positive certi-definite

Variational characterization of eigenvalues

Librature: Bhatia : Hatnis Avolysis.

Rayleigh coefficient

$$\frac{Raylingh \cos eff.}{Raylingh \cos eff.} \sim first eigenvalue}$$

$$\frac{Prop}{Lef A be symmetric, lef $A_1 \in A_2 \in ... \in A_n$
be the signivalues and $v_{1,..., v_n}$ the eigenvectors of A.
Then:
min $R_A(x) = min x^{t}Ax = A_1$, attained at
 $x \in \mathbb{R}^n$ $\|x\| = A$ $x = v_1$
max $R_A(x) = max x^{t}Ax = A_n$, attained at v_n .
 $x \in \mathbb{R}^n$ $\|x\| = A$$$

Intuition for the proposition
Assume A is expressed in towns of the basis
$$v_{1},...,v_{n}$$
 by
 $A = \begin{pmatrix} i_{1} & 0 \\ 0 & A_{n} \end{pmatrix}$. Let y be a vector, also expressed
in their basis: $y = y_{1}v_{1} + y_{2}v_{2} + ... + y_{n}v_{n}$ $y = \begin{pmatrix} v_{n} \\ \vdots \\ v_{n} \end{pmatrix}$
(8) $y^{k}Ay = A_{1}y_{n}^{2} + ... + A_{n}y_{n}^{2}$
Ausang the vectors $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$;
the reallest routh of $y^{k}Ay$ would be prive by
the vector $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$; and the value would be A_{1}

Formal proof (shetch)
Arrune we short with the standard basis.
Let
$$Q = \begin{pmatrix} v_n & \dots & v_n \\ v_n & \dots & v_n \end{pmatrix}$$
 be the basis transformation that brings A
in diagonal form: Q or Hisgonal such that
 $A = Q^{\dagger} \Lambda Q$ with Λ diagonal.

For a vector
$$X = \begin{pmatrix} x_n \\ x_n \end{pmatrix}$$
 in the original baas, we use could
the transformed vector $Y := Q^{t} X$ and compute
its Rayleigh coefficient:

 $R_{A}(y) = \frac{\left(\begin{array}{c} a^{b} x \end{array}\right)^{t}}{\left(\begin{array}{c} a^{b} x \end{array}\right)^{t}} \left(\begin{array}{c} a^{b} A \end{array}\right) \left(\begin{array}{c} a^{b} x \end{array}\right)} \left(\begin{array}{c} a^{b} x \end{array}\right)^{t} = x^{t} Q$ $\left(\begin{array}{c} a^{b} x \end{array}\right)^{t} \left(\begin{array}{c} a^{b} x \end{array}\right) \left(\begin{array}{c} a^{b} x \end{array}\right)$

 $= \frac{x^{t}QQ^{t}\Lambda QQ^{t}x}{x^{t}QQ^{t}x}$

$$= \frac{x^{\frac{1}{2}} \int x}{\frac{1}{x^{\frac{1}{2}}}} = \frac{\lambda_1 x_1^{\frac{1}{2}} - \cdot \lambda_0 x_0^2}{\|x\|}$$

min
$$R_{A}(y) = \min x_{1}x_{1}^{e} + \dots + \lambda_{n}x_{n}^{e}$$

 $\|y\| = \Lambda \qquad \|x\| = \Lambda$

This min. is a fained for
$$x = \begin{pmatrix} n \\ 0 \\ 0 \end{pmatrix}$$
, that is
 $y = Q^{t}x = v_{1}$, with value $R(y) = \int_{1}^{1}$.

Rayleigh coeff
$$\neg$$
 record eigenvalue
Courridu a symmetric matrix A with inpurvalues
 $A_1 \in A_2 \in ... \in A_n$ Courridu the ophimization
problem
min $R(x)$
 $\|x\| > A$
 $x \perp v_h$

Prop

this problem is solved by
$$x = v_2$$
, $\mathcal{R}(v_2) = \lambda_2$.

Proof intuition

Consider operator A restricted to the space

$$V_{1}^{\perp} := (space \{v_{1}\})^{\perp}$$
. We know that on this
space, A is invariant and symmetric, so we can
apply Rayleigh to this "smalle" space.
 $V_{1}^{\perp} := space \{v_{2}, ..., v_{n}\}$
if we apply Rayleigh to V_{4}^{\perp} , then we get
the solution I_{2} , V_{2} .

$$\frac{\mathcal{H}_{eercun}}{\mathcal{L}_{e}} A \in \mathbb{R}^{n \times n}$$
 symmetric; eigenvalues $\mathcal{L}_{f} \leq \dots \leq \mathcal{L}_{n}$. Then:

$$\frac{\mathcal{L}_{e}}{\mathcal{L}_{e}} = \min \qquad \max \qquad \mathcal{R}_{A} \xrightarrow{(x)} \qquad (1)$$

$$\frac{\mathcal{L}_{e}}{\mathcal{L}_{e}} = \max \qquad x \in \mathcal{U} \setminus \{0\}$$

$$= \max \qquad \min \qquad \mathcal{L}_{A} \xrightarrow{(x)} \qquad (2)$$

$$\frac{\mathcal{L}_{e}}{\mathcal{L}_{e}} \xrightarrow{(x)}{\mathcal{L}_{e}} \xrightarrow{(x)} \qquad (2)$$

Proof intuition • For case h=1, case (2) is profy much what we have proved already: max min RA(K) = Unsigne xEU/[2] dim U= u-h+1 previour Koult ran drop it = min $R_A(x) = \lambda_1$. $x \in V \setminus Sn^2$ * E V \ 803 (ak (1) Kollows similar principles. · cak h= 2 similar to the previous stahnert. General Case: induction.

Mohvahon

Given a matrix
$$A \in \mathbb{R}^{m \times n}$$
. Define the followity using:

$$\|A\|_{max} = \|A\|_{\infty} = \max_{\substack{i \in i \\ i \neq i}} |a_{ij}|^{2}$$

$$\|A\|_{F} = \sqrt{\sum_{\substack{i \in i \\ i \neq i}} a_{ij}}^{2} = \sqrt{\frac{1}{12} \sigma_{i}}^{2} + \sqrt{\frac{1}{12} \sigma_{i}}^{2}} + \sqrt{\frac{1}{12} \sigma_{i}}^{2}} + \sqrt{\frac{1}{12} \sigma_{i}}^{2} + \sqrt{\frac{1}{12} \sigma_{i}}^{2}} + \sqrt{\frac{1$$

$$\|A\|_{2}^{2} = \sigma_{max}(A) \quad where \quad \sigma_{max} \text{ is the largest singular on the$$

$$\|A\|_{x} = tr(\sqrt{A^{t}A^{t}})$$
 nuclear norm

Many more matrix norms exist ...

Simple inequalities
Let
$$A \in \mathbb{R}^{m \times n}$$
. Thus:
 $\|A\|_2 \leq \|A\|_F \leq \sqrt{n} \|A\|_2$
 $\frac{1}{\sqrt{n}} \|A\|_{\infty} \leq \|A\|_2 \leq \sqrt{n} \|A\|_{\infty}$
 $\|A\|_2 \leq \sqrt{\|A\|_1 \cdot \|A\|_{\infty}}$
 $\|A\|_2 \leq \sqrt{\|A\|_1 \cdot \|A\|_{\infty}}$
Havy, many war... see eg the book on Matrix Analysis
by Bhatian.

Singular value de composition

UL mohivation: recommender systems

· Vetflix rahings: huge matrix!

rahings of a particular use are "not random" but have structure
"compress" the watrix into something much smaller that also better aparents the "structure" of this watrix.

Singular value de composition

Proposition Counter
$$A \in \mathbb{R}^{M \times M}$$
 of rank r . Then are ran
write A in the form
 $A = U \cdot Z \cdot V^{\pm}$
where $U \in \mathbb{R}^{M \times M}$, $V \in \mathbb{R}^{M \times M}$ are orthogonal matrices and
 $Z \in \mathbb{R}^{M \times M}$ is "diagonal".
 $m \begin{pmatrix} G & 0 \\ 0 & 5 \\ 0 \end{pmatrix} = m \begin{pmatrix} G & 0 \\ 0 & 6 \\ 0 \end{pmatrix}$
Exactly r of the diagonal values $G_{11} \in Z_{1}$.

llustrahon

Proof shetch

· B is symmetric: obruve : $(A^{b}A)^{t} = A^{t}(A^{b})^{t} = A^{b}A$ $(A^{t}A)^{t} \times A^{t}(A^{t})^{t} \times A^{t}A^{t}$ · I is popihive semi-definik: $x^{t}Bx = \langle x, Bx \rangle = \langle x, A^{t}Ax \rangle$ 2 x, Cx7 = < Ax, Ax7 = < (t × , Y > = || A × ||² ≥ 0
So have earths an orthonormal beaux of eigenvectors

$$\frac{v_{1}...,v_{n}}{v_{n}}$$
 with eigenvalues $\frac{x_{1}...,x_{n}}{v_{1}...,v_{n}} \ge 0$.
Define:
 $Z = \begin{pmatrix} \sigma_{1} \\ & \sigma_{n} \end{pmatrix} \in \mathbb{R}^{m \times n}$ where $\sigma_{i} = \sqrt{\lambda_{i}}$
 $U = \begin{pmatrix} 1 \\ u_{i}^{i} \end{pmatrix}$ unitrix with column $u_{i} = \frac{Av_{i}}{\sigma_{i}}$
 $V = \begin{pmatrix} v_{i}^{i} \end{pmatrix}$ unitrix with column $u_{i} = \frac{Av_{i}}{\sigma_{i}}$
 $V = \begin{pmatrix} v_{i}^{i} \end{pmatrix}$ unitrix with column $u_{i} = \frac{Av_{i}}{\sigma_{i}}$

we have $A = U \cdot \Sigma \cdot V^{t}$:

Jasic properties of PVD

• If the matrix A has rough r, then

$$hor(A) = Span \{v_{r+n}, \dots, v_n\}$$

 $rouge(A) = Span \{u_{n}, \dots, u_r\}$

Prost : Exercice

Key differences between SVD (A) and eig (A)

• SVD always exists, no mate how A Wohr like! can be rectangular, down ust need to be symmetric,...

• singular values are always real and non-negative.

Key differences between SVD (A) and eig (A)

Relationship SVD(4) and eig (44[±]) symmetric!

- For general (ust nec. square) motrices A:
 Left-singular vectors of A are the eigenvectors of AA^t.
 Right-
- I = 0 is an eigenvalue of AA (=>
 VIII=0 is ringule value of A

More formaliz:

$$A_{k} = \sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{t}$$

Observe: route (An) = k.

Hebrem (Echort - Young - Hirrley)
Let H. II be a'Nor the Frobenius-norm
$$\|\cdot\|_{F}$$
 or the
two-norm $\|\cdot\|_{2}$.
Consider a matrix $A \in \mathbb{R}^{m \times n}$, A_{k} the box-rank-matrix
constructed above, and $\mathbb{P} \in \mathbb{R}^{m \times n}$ any other rank-to matrix
then $\|A - A_{k}\| \leq \|A - B\|$.
In posticular,
 $\|A - A_{k}\| = \begin{cases} \sigma_{hen} & \text{in rank of } \|\cdot\|_{2} \\ (\sum_{i=k+n}^{m \times n} \sigma_{i}^{2})^{\frac{d_{i}}{2}} & \text{in rank } \|\cdot\|_{F} \end{cases}$

Prost: rhipped.

Stop and matrix using Considur $A \in \mathbb{R}^{m \times n}$ with singular volues $6_1 \ge 6_2 \ge \dots \ge 6_p$. ($p = \min \{n, m\}$).

•
$$\|A\|_{F} = \sigma_{1}^{2} + \dots + \sigma_{p}^{2}$$

• $\|A\|_{2} = \sigma_{1}$

proof : disped

Pseudo-inverse Definition for AER, a pseudo-invose of A is defined as the matrix $A^{\#} \in \mathbb{R}^{n \times m}$ which satisfies the ollowing conditions: 14 A would be invehille t ld in peuval (1) $A A^{\#} A = A$ # Jd in pured(2) $A^{\#} A A^{\#} = A^{\#}$ (2) $A^{\#} A A^{\#} = A^{\#}$ AAT = Id => AATA =A (3) $(AA^{\#})^{t} = AA^{\#}$ } symmetry (4) $(A^{\#}A)^{t} = A^{\#}A$ }

lutaition :

Does Kie job. How to do it for general metrices? ~ JVD! Moore - fenne preudoinverse Proporition: Let $A \in \mathbb{R}^{man}$, $A = U \sum V^{t}$ its sto. Then the following matrix is a preudo-inverse:

$$A^{\ddagger} := V Z^{\ddagger} U^{\ddagger} w^{i} h Z^{\ddagger} e R^{w x u}$$

$$Z^{\ddagger}_{ii} = \int V Z_{ii} if \Sigma_{ii} \neq 0$$

$$Z^{\ddagger}_{ii} = \int V Z_{ii} if \Sigma_{ii} \neq 0$$
of how if the second sec

Prosf: easy, just do it.

Proposition: If A is involuble, then $A^{-1} = A^{\pm}$. Proof: eory, just do it.

Trace of a motify

Trace

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

•

• The trace of an operator equals the sum of its
complex eigenvalues, summed orcording to multiplicity:

$$\widetilde{A} = \begin{pmatrix} \lambda_{1} & \chi \\ 0 & \lambda_{n} \end{pmatrix}$$
 with some basis $V_{1,\dots,1} V_{n}$
 $=) tr (\widetilde{A}) = \sum_{i=1}^{n} \lambda_{i}$

in the chos. polynomial $PA(t) = t^{n} + \alpha_{n-1} t^{n-1} + \cdots + \beta_{n-1} t^{n-1} + \cdots + \beta$

Trace vs debuisvant

Riddle

Couridu a real-valued which
$$A \in \mathbb{R}^{n\times n}$$
.
Over C , are can alwars find inpurvolues $A_{n,\dots}$ in $E \subset$
and boing the watris in triongular form, \overline{A} . Then:
 $M(A) = \sum_{i \leq n} a_{ii}^{**} \in \mathbb{R}$ but the two on identical terrouse
 $Mare in independent of basis,$
 $tr(\overline{A}) = \sum_{i \leq n} E \subset$ hence $M(\overline{A}) \in \mathbb{R}$!?!?
 $E \subset$
So even over C_{1} the trace obvors is a real number. Seems confurig...

Let's look et ou crample:

Example: Consider a rotation matrix

$$A = \begin{pmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{pmatrix}$$

· A does not have any real eigenvalues.

. The trace is give as 2.cos Q.

. Here chass poly. of A is

$$p(f) = det (A - t I) = det \begin{pmatrix} (cor \theta) - t & -si \\ si & 0 \end{pmatrix}$$

$$(cor \theta) - t$$

$$= (\cos \theta - t)^{2} + \sin^{2} \theta$$

$$= t^{2} - 2\cos \theta + t + \frac{\cos^{2} \theta + \sin^{2} \theta}{=1}$$

$$= t^{2} - (2\cos \theta) \cdot t + 1$$

Reason: the complete eigenvalues have their sots in solving quadratic equations, as in the last example: $J_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

• If
$$b^2 - bac > 0$$
, eigenvalues $\in IR$
• If $b^2 - bac < 0$, Here eigenvalues are
 $\int 1/2^2 - \frac{b!i!}{2a} = \frac{-b}{2a} = \frac{-b}{2a} = i! \sqrt{4ac - b^2}$
so here or complex conjugator, and $\int 1/2 \in R$.

Spectral radius

Def The spectral radius of a motrix AG Russi or AG Curu is defined as

(Note that even for real matrices, this definition looks at all complex eigt of A).

Proposition
$$\lim_{k\to\infty} A^{k} = 0$$
 (-> $g(A) < A$
 $k\to\infty$ in Productive norm: $\|A^{k} - 0\|_{F} \rightarrow 0$
Proof "=>" Let v the eigenvector of the eig A that defines $g(A)$.
 $O \stackrel{\text{atr.}}{=} \lim_{k\to\infty} A^{k} v \stackrel{\text{cig}}{=} \lim_{k\to\infty} A^{k} v = (\lim_{k\to\infty} A^{k})v$
 $h\to\infty$
this implies $\lim_{k\to\infty} A^{k} = 0$, thus $|A| < A$.
"(=" Proof for symmetric matrices:
 $A = U D U^{t}$, then $A^{k} = U D^{k} U^{t}$.
 $\|A\|_{F} = \|D\|_{F} \rightarrow 0$.
For general matrices, need to explosit another normal form,
the Jordan normal form. Shipped.

Neumann series

Prop. The series
$$\sum_{i=0}^{\infty} A^{k}$$
 converges if and only if $g(A) < 1$.

•
$$(f g(A) \ge 1, \text{ then } (I - A) \text{ is invertible and}$$

 $(I - A)^{-1} = \sum_{i=0}^{\infty} A^{k}$
 $\int_{1-\alpha}^{1-\alpha} = \sum_{k=0}^{\infty} A^{k}$

Matrix expression

For any wohring
$$A$$
 hur review
 $exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!} = \Gamma + A + \frac{A^2}{2} + \dots$
 $n = 0$

converges. It is called the watrix exponential.
The watrix exp(A) is always invehible and

$$\left(exp(A)\right)^{-A} = -exp(-A)$$

Literature, Golub/van Lous: Matrix computation

Triangular matrices are great If we have a matrix in triangular form, thus wany standard quantities can be rasily computed: · Solving a liner system : A x = b $\begin{pmatrix} a_{AA} & a_{A2} & a_{A3} \\ c & a_{22} & a_{23} \\ 0 & 0 & a_{73} \end{pmatrix} \begin{pmatrix} x_{A} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} b_{A} \\ b_{2} \\ b_{3} \end{pmatrix}$ Stating prove boltom: x3 = 63/a33 1 then plug in the percend-low row, x2= (b2-a23 Kg)/a22

Linear system: Merry

Salving linear systems is about the most both's task and occurper a substrp of wore complex algorithms all on the place. Ax = b

Gauer algrikhen to solve lineer systems

Intaition :

- · Take the first equation and use it to eliminate the first variable in all other equations.
- · Then use the second equation to eliminate the frond variable from all the remaining equations.

- · At the end, we are left with our apper triangular wohite
- We ken solve he system starting prom the looksur...

La decomposition

Idea: Oue can see that the Gaussian elimination algorithm implicitly does some kling word peneral. Given a square matrix A, it decomposes A into a product A= L'U where Lis a lower triangular me trie and U an upper triangular matix. LU decomposition exists under certain conditions. In particulary for symmetric pd matrices it always chists.

LU decomposition la solue a linear system O(m) Our we have a Lu de composition, the volution to the problem the be can the be found by solving two linear systems (trivial due to triang. form): (1) $L_{Y} = b$ (2) $U_{X} = \gamma$ (2) $U_{X} = \gamma$ (3) $U_{X} = \gamma$ (4) $L_{Y} = L_{Y} = L_{Y} = L_{Y} = b.$ Q(n2) $O(u^2)$
Lu decomposition to compute the invote Fo compute the invote of a metrix, we have to find a matrix X that volves $A \cdot X = I$. This corresponds to volving u linear systems: $A \cdot \chi = e_i$

Once we have the Lle-decomposition of A, we raw simply solve them.

0 (n3)

Cholosly factorization For the special corr of symmetric, psol watrices, one can

simplify the LU decomposition:

$$A = LL^{t}$$

Is numerically very rubble, was less memory than LU, and is a bit faster than LU (still O(u³), but with better constants)

QR decomposition

Aug matrix A E IR^{uxu} can be decomposed as A= QR

where Q is an orthogonal watrix and R is appertingular.

Several algorithms exist, with differt advantages / diradvantages.

QR de componision to find orknogonal horis

Hor generally, the first le columner of & form au arthousemal basis of the subspace ground by the first column of A.

QR decomposition la compute <u>all</u> ajuvalues of <u>deure</u> matrices A

(trative procedure: • $A^{(0)} = : A$

• For
$$k = \Lambda_1^2 \dots$$

• Compute QR for britchion of $\Lambda^{(u-n)}$:
 $\Lambda^{(u-n)} = Q^{(u)} R^{(u)}$
• Recombine in reveal order:
 $\Lambda^{(u)} := R^{(u)} Q^{(u)}$

Largest eigenvalue and eigenvector Let $A \in \mathbb{R}^{n \times n}$ with eigenvalues $A_1, ..., A_m$ such that $|A_1| > |A_2| \dots > Hm|$.

Power method (vouilla version)

· Problematic if eigenspace hus dim 21, or if it is unhuswon whether A has an eigenvalue in the first place.

Itrative methods for sporse matrices

Naux of the algorithms we have seen (LU, QR,...) cannot really exploit sporsity of a watrix. Bad, in HL many watries ar very your.

Albuahinly, oue uses ibrative methods that are haved on water's - vector-wultiplications (enougle: pour method)

Coujugate gradient method por linear systems of sporse symmetric pol matrices

• would be solve Ax = b

· Couridu rue minimization problem min Q(x) will

$$\mathcal{O}(x) = \frac{1}{2} x^{t} A x - x^{t} b.$$

Minimum is orderered by setting & := A⁻¹6.

· So we raw find the solution x to our system tx= b by minimizing Q.

The gradient is VQCE = Ax - b and can be computed just with a matrix - vector product (good for sparsity).
Now apply aphimization methods (conjugate gradient descent).

Not treated this year, but the videor shill exist if you are intrested.

Quotient spaces

Scipped

$$\frac{2eF}{equivalence relation on S if the xite of anequivalence relation on S if the xite of :(EA) (x, x) \in R (reflexivity)(E2) (xit) \in R => (y, x) \in R (symmetry)(E3) (xit) \in R, (y, z) \in R => (x, z) \in R (transmissity)$$

Notation: (*14) eR (=) XNY

Conrequence: An equivalence classes.

Define the quotient "space" as

$$V/W := \{ Ev3 \mid v \in V \}$$

 $Ev3, Eu3 \in WW$
 $Ev3 + Eu3 : (=> Ev+u3)$
 $\lambda Ev3 : (=> E \lambda v]$

These operations on well-defined:
support
$$v' \sim v$$
 (i.e. $v' \in [v]$, $[v] = [v']$)
 $u' \sim u$
 $[v] \neq [u] \stackrel{?}{=} [v'] \neq [u']$
 $v \sim v' \iff \exists w \in W \quad v \sim v' = w$
 $u \sim u' \iff \exists w \in W \quad v \sim v' = w$
 $u \sim u' \iff \exists w \in W \quad u \sim u' = \tilde{w}$
 $[v] \neq [u] = [v \neq u]] ? (v \neq u) \sim (v' \neq u')$
 $[v'] \neq [u'] = [v' \neq u'] \quad (v \neq u') = (v \neq u')$
 $= (v - v') \neq (u - u') \in W$

· similarly, for scalar mult.

(V/W, t, .) is a vector proce: exercise.

Prop: Counder g: V-> V/W, V H> [V]. Then:

- · g is linear
- her(g) = W
- \cdot range (g) = V/W
- · If V has finik dim, then dim VW = dim V dim W.

Charachristic polynomial

Kotivalien : Av = Zv

SKIPPED

A usu - matrix v \$ 0

$$(=) (A - \lambda E) v = 0$$

$$(=) v \in her(A - \lambda E)$$

$$(=) vauk(A - \lambda E) < n$$

$$(=) det(A - \lambda E) = 0$$

$$\frac{Def}{defined} = \begin{cases} Def}{defined} = \int def(ar neu-matrix) A \\ \frac{defined}{defined} = \int def(A - t \cdot E) \\ \frac{defined}{defined} = \int def(A - t \cdot E) \end{cases}$$

Example:
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

det
$$(A - t \cdot I) = det \left(\begin{pmatrix} a_{11} - a_{12} \\ a_{21} & a_{22} \end{pmatrix} - t \cdot \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \right)$$

= det $\begin{pmatrix} a_{11} - t & a_{12} \\ a_{21} & a_{22} - t \end{pmatrix}$

$$= (o_{11} - t)(a_{12} - t) - a_{12} \cdot a_{21}$$

= $t^{2} + t(-a_{11} - a_{22}) - a_{12} \cdot a_{21} + a_{11} \cdot a_{22}$

Obrevations

.

· PA (+) is a polynomial with degree n

$$de f \left(UAU^{-A} - t \cdot I \right)$$

$$= de f \left(UAU^{-A} - t \cdot U \cdot U^{-A} \right)$$

$$= de f \left(U \left(A - t \cdot I \right) U^{-A} \right)$$

$$= de f \left(u \right) \cdot de f \left(A - t \cdot I \right) \cdot de f \left(u^{-A} - t \cdot I \right)$$

• The roots of the characturistic poly. correspond reactly to the eigenvalues of A.

A is invotible (=> 0 is <u>not</u> an ign value.
 If 0 is an eigenvalue, a.v with
 Av = 0.v = 0
 Av = 0.v = 0
 (A) mon involute

Def For an operator A with signivalue I, are define its
geometric multiplicity as the dimension of the
corr. eigenspace
$$E(I, A)$$
.
The alphornic multiplicity is the multiplicity of the
root I in the chos. poly.

In general, the two nobieur do not coincide.

Computing eigs in theory
• Write down the dow. pol., find the roots.
In eigenvalues
• To compute the eigenvectors, solve the lin. system

$$t = dx$$

Couver set

lutaition

Symmetric set

Convex sts induce norms

Theorem:
(A) Let
$$C \subset \mathbb{R}^{d}$$
 closed, couver, symmetric
and how non-empty interior. Define
 $p(x) := \inf \{ t : 0 \mid x \in C \}$. Then
 $= \inf \{ t : 0 \mid x \in C \}$, there more interior.

p is a semi-norm. If C is bounded, then p is a norm, and its unit ball coincides with C:

$$C = \{x \in \mathbb{R}^d \mid p(x) \leq n\}$$

(2) For any norm 11.11 on Rd. the set
$$C := \{x \in \mathbb{R}^d \mid \|x\| \leq l\}$$

is bounded, symmetric, cloud, coursex, and has
non-empty interior.

Courider factor a by which I need to multiply × to end up on the unit rphere. then define l[x][:= 1/a.

The next couple of vages breat the proof of this theorem.

Prost pexi is well defined

Intuition:

By and, (has at loost one interior point

$$v \in C^{\circ} \Rightarrow \exists \epsilon$$
 such that
 $B_{\epsilon}(v) \in C$
 $v \in B_{\epsilon}(0) \Rightarrow \{v \in \epsilon \mid \epsilon \in B_{\epsilon}(0)\}$
 $B_{\epsilon}(0) \Rightarrow \{v \in \epsilon \in c \Rightarrow -(v \in \epsilon) \in C$
 $B_{\epsilon}(v) = e \in C \Rightarrow -(v \in \epsilon) \in C$
 $B_{\epsilon}(v) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v) = C = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = e \in C$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon)$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon)$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon)$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon)$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon)$
 $S_{\epsilon}(v \in \epsilon)$
 $S_{\epsilon}(v \in \epsilon) = S_{\epsilon}(v \in \epsilon)$
 $S_{\epsilon}(v \in \epsilon)$
 $S_{\epsilon}(v$

because Sx CR, O is a lour bound.

Now we need to prove all axisms of a norm:

.

$$p(0) = 0$$

$$. \text{ Here Freen: } 0 \in C$$

$$p(\alpha x) = |\alpha| p(x)$$

. For all a so we have

$$p(\alpha \cdot x) = \inf \{f \neq 0 \mid \frac{x}{t} \in C\} = C = C = \frac{t}{\alpha}$$
$$= \inf \{\alpha \cdot s \neq 0 \mid \frac{x}{s} \in C\}$$
$$= \alpha \cdot \inf \{f \neq 0 \mid \frac{x}{s} \in C\}$$

pexi

=)
$$p(xx) = d \cdot p(x)$$

• By rymmetry we also put

$$p(-x) = \inf \{f > 0 \mid \frac{-x}{t} \in C\} = \frac{-x}{t} \in C = \frac{x}{t} \in C$$

 $= \inf \{f > 0 \mid \frac{x}{t} \in C\} = p(x)$

· Coursing the two stateasts give housqueity.

Want to
prove:
$$\frac{d}{dr} = \inf \left\{ \frac{u}{dr} \right\} = \inf \left\{ \frac{u}{dr} \right\} = \inf \left\{ \frac{u}{dr} \right\} = \inf \left\{ \frac{u}{dr} \right\}$$

$$\frac{S}{S+t} + \frac{t}{s} + \frac{t}{s+t} + \frac{t}{s} +$$

$$\frac{x+y}{s+t} \in C$$
Consider a required
$$(s_i)_{i \in N}$$
 rach that
 $\frac{x}{s_i} \in C$ and $s_i \rightarrow p(x)$
Similarly $(t_i)_{i \in N}$ such that $\frac{y}{t_i} \in C$ and $t_i \rightarrow p(y)$.
By the argument above, we know that
 $t_i: p(x \in y) \leq s_i + t_i$
 $y = y(x \in y) \leq s_i + t_i$
 $y = y(x \in y) = s_i + t_i$

=) $p(x+y) \leq p(x) + p(y)$.

$$p(x) = 0 \quad (x) \quad (x \neq 0)$$

$$p(x) = 0 \quad (x \neq 0) \quad (x \neq 0$$

Space of continuous functions

Prop Then the space
$$\mathcal{C}^{b}(t)$$
 with norm $ll \cdot ll_{do}$ is a Baroch space: a complete, normed vector space.

Proof outline: . need to check vector prace axioms

- · norm akisms
- · completeness: follows from the fact that U. 1/20 induces uniform convergence

Space of differentiable functions Let $[a, b] \subset \mathbb{R}, \mathcal{C}^{1}([a, b]) = \{f: [a, b] \rightarrow \mathbb{R} \mid f \text{ is cont.} \}$ difrenhose } Whith usru? · Couridu le 1100. With this usen, Ca is not complete! limit function, not differentiable! 4fli:= sup max [[f(+)], [f'(+)]] Consider . te [0,6] $\|\|f\|\| := \|f\|_{\infty} + \|f'\|_{\infty}$ er ([a15]) with any of these two norms is a Banoch space.

Spaces of integrable functions? • Courridus $C^{5}([a,b])$ with the usual $\|f\|_{n} := \int_{a}^{b} |f(t)| dt$ Can see: $\|\cdot\|_{n}$ is a usual, but the space is not complete.

Cousider
$$R(Ea, bJ)$$
 of all Riemann-interpredice functions
on $Ea, bJ C dR$, together with $\| \cdot \|_{1}$.
However, on $R(Ea, bJ)$, $\| \cdot \|_{1}$ is not a
norm: it is not true that
 $\| f \theta = 0 = 3$, $f = 0$

Sf dt=0 but f\$0

Def For 1 4 p 2 00, ve define

$$\frac{1^{100}f:}{50 \text{ we do not}} = \left(\begin{array}{c} c(eod) \\ (c(eod)) \\ (c($$

1

$$\int \|f\|_{p} \text{ is not a verse! For example, the function}$$

$$\int \|f\|_{p} \text{ is not a verse! For example, the function}$$

$$\int (\kappa) = \begin{cases} \Lambda & \text{if } \kappa = 17 \\ 0 & \text{otherwise} \end{cases}$$

$$\text{ has integral } 0, \text{ but is not}$$

He O-function.

Let
$$(f_i)_i$$
 be a require ruch that
 $a := \sum_{i=1}^{\infty} \|f_i\|_p < \infty$
 h_{u_i} then with $f_i \neq f_i \to f_i$ (in h_{u_i}).

$$g_n := \sum_{i=n}^n |f_i| \in Z_p$$

gn -> g monotousurly

Now we can define $g(t) = \begin{cases} \hat{g}(t) & t \in [a, b] \setminus N \\ 0 & t \in N \end{cases}$ $G(t) = \begin{cases} \hat{g}(t) & t \in [a, b] \setminus N \\ 0 & t \in N \end{cases}$

From Mis it was follows that
$$f(t): \sum_{i=1}^{\infty} f_i(t), t \notin N$$

with For $f \in N$, we set $f(t) = 0$.
Now fir measurable, and in \mathcal{X}_p

From Zp to Lp

We contructed a space Zp with the Lebergue integral
as a semi-norm. This means,
given
$$f \in Zp$$
, we can change the products of f
in a set of measure O, usulting is \tilde{f} , but the
norm "does not see a differce":
If $f - \tilde{f} = 0$
To fix this, we want to consider purchious to be "equivalent"
if they only differ by a set of measure O.

Г

Now couride the quotient space of Zp wit this refspace:

A 11

$$L_{p}(E_{\alpha,bJ}) := \mathcal{X}_{p}(E_{\alpha,bJ})/N$$

Mis "norm" is a norm, become $\| EFJ \|_{p} = 0 = \sum EFJ = [0].$

For simplicity, in future we with liflip for IICFJIIp.

· quite auvoying for modine loarning, where we always want to evaluate functions on input roints.

· often un alternative spaces instead, for eacyle reproducing hand Hilbert spaces.

Operator norm SKIMED

Continuous - Lounded

Definition

is called the operator users of T.

Obrove: coincides with the matrix norm N·H2 as we had defined it earlier.

Examples

• Evaluation operator:
$$T: C[o, \Lambda] \rightarrow R$$
, $Tf = f(O)$.
Ar norme couries $\|\cdot\|_{\infty}$ on $C[o, \Lambda]$, $|\cdot|$ on R . Then
 $\|T\| = \Lambda$.

$$\frac{\|Tf\|}{fe C G \Lambda} \frac{\|Tf\|}{\|f\|_{\infty}} = \sup \frac{\|f(O)\|}{\|f\|_{\infty}} = \operatorname{deriv} = \Lambda$$

· Integral aperator:
$$T: E[D_1, \Lambda] \rightarrow R, Tf = \int_{D}^{1} f(F) df$$

With the same usual as above, T is cout, and has
 $\|T\| = \lambda$.

Examples

- · Consider U. 10 on 2ª and C. Then Dir linear, but not continuous!
- · Consider III fill :- Il f llos + ll f'llos on Ch. Cuille His usen, D is continuous and bounded.

Dual space SKIPPED

Jual space

linear Definition VVS, T: V -> Fis called a functional. Given a vector space V, the algebraic dual space V* courints of all linear funchional du V: $V^* := \chi(V, F).$ If V is a usrued VS, then the space of all linear, continuous functionals from V to F is called the

(topological) dual space V' of V.

We endow the dual space with the operator users

$$\|T\| := \sup_{x \in X} \frac{\|T_x\|}{\|x\|}$$

Examples

- K C R compact set, C(K) space of cont. fets
 with U. 160. Then (C(K))' is equivalent to
 He space H(K), He space of all (Radon) measures
 over K.
- $S \subset R$ measurable set, $\Lambda \leq \rho \leq \infty$, q such that $\frac{1}{\rho} = \frac{1}{q} = 1$. Then: the dual of $L_{\rho}(S)$ is given as $L^{q}(S)$.

Riesz representation theorem

Theorem: H Hilbert space, H' its dual. Hun the
mapping
$$\Phi: H \rightarrow H'$$
, $\gamma \mapsto \langle \cdot, \gamma \rangle$
is bijective, isometric, and satisfies $\Phi(Ax) = \overline{A} \Phi(\gamma)$.
Stated differently: for any mapping $x' \in H'$ there exists
a unique $\gamma \in H$ such that $x'(x) = \langle x, \gamma \rangle$.

Adjoint operator

Definition

q

Let
$$T \in \mathcal{L}(H_1, H_2)$$
, H_1, H_2 Willert spaces. Then
Hure seconds $T^*: H_2 \rightarrow H_1$ ruch that
 $< T_{X_1} Y \gamma_{H_2} = < x_1 T^* \gamma \gamma_{H_1}$.
for all $x \in H_1$, $\gamma \in H_2$. T^* is called the adjoint of T.

-+1

Det An operator
$$\Gamma: H_1 \rightarrow H_1$$
 is called self-adjoint
if $\langle \Gamma_{X,Y} \rangle = \langle X_1, \Gamma_Y \rangle$