
 

Part II

Calculus



ML motivation

ML is all about optimizing functions to fit thetraining
data

and we typically use gradients to do this
So we need to know everything about

differential calculus in
1121

To be able to define all of this we first
need to look at sequences and

convergence

And if you want to be a Bayesian you need to integrate all the

time



 

ISequencesandcou
ergence.IM

keyword courgenie of a learning algorithm



Cauchy sequence

Df d
ulnen c 112 is called a Cauchysequence if

0 NEN u m N Itu tm LE

i t.in

t.FI I111
taxes N tu tm



Accumulation point

A point E IR is called accumulation point of the

sequence Xulu if

VESO NEIN nsN Xu x E

In IRd we replace the absolute value with
a norm Itu 11



Convergence

A sequence Xulu converges to x E Rd if
70 N K n N Ia el C E

Notation limo to x ta



First observations

a sequece can have many acc points
or none at all

even if the sequence has just one ace point

it is not nece a Cauchy sequence

If Kulu converges to x then x is the only acc point

and the sequence is Cauchy



Example

Xu on J o n ER O C 1

tuln is Cauchy but does not converge
within 0,1

It does converge to
0 on 0,1

Consider the sequence an
if n even

u if u odd

It has an accumulation point but is not Cauchy



Maximum and upper bound

Assume we are on IR or more general on a space

that has a total ordering Let U C IR be a subset

E IR is called a maximum element of U if

EU and ueU u T
is called an up bound of U if doesnothavetobe

in U

well u

x is called umofU if it is the smallest upper
bound

Analogously min lower bound intimum



Examples

A is the maximum of 0,1 It is also the supremum

of 0,1

To n does not have a maximum element

5 is an upper bound of Jo 1

A is also an upper bound of 30 1

1 is the supremum of 30,1



Bounded sequence

A sequence taluen CIR is called bounded if

there exist a b G IR such that to a a b for all n EN

11C Heine Bord Any bounded sequente in IR

has at least one accumulation point



Limsup and limint

For a sequence tulu C IR we define

limint xu is inf m

n 0 men

limsup Xu is his En
m

n a



Observations

For a bounded sequence Xu n

the limsup is the largest accumulation point of Kulu

limint smallest

The limint is the largest ye IR such that

SO N us N Xu y E



 

Misicconceptiint
topology



Open and closed sets

If Let ix d be a metric space and denoh for xeX 70

Bact YE X 1 day

Def A subset Ucx of a metricspace is
called closed if all

Cauchy sequences courage and have their limit point
in U

A set U C X is called opens if
well 70 Be u C U

Topologies open closed
nets can alsodefined if a metric doesnot exist



Examples

Set 0,1 is cloud

set 30,1 is open

IE
The utel

A set U can be neither open nor closed

o 1



Open vs closed

Proposition Complements of open sets are closed

Complements of closed sets are open



Interior closure

Def A point a EU is an interior point of U if
there exists a E 0 s.h.ca C U

U 0,1 Men 630,1C are interiorpts

The topological closure of a set U is defined as

the set of points that can be approximated by

Cauchy sequences in U

we w̅ OF zed d wit Ʃ

Notation It is the closure of U

The topological interior of a set U is defined

as the set of interior points of
U

Notation 4



Boundary

the topological boundary of a set U is defined

as the set It U literature not always
consistenthere

0,1 sometimes one also reads
4140 instead of

x ̅ o 1 anu

0 1

boundary x FIX 0,1

boundary X 0

Def A set U C X is bounded if there eists

D 0 such that u rEU d a v 2 D



Dense sets

Def A set U is dense in X if we can approximate

every EX by a sequence in U Formally

xeX O B can U

Eames Q is a dense subset of IR

Let C 0,17 be the set of functions 0,1 that are differentiable

and 6 0.1 the continuous functions Then E 0,1 is dense

in E o n with mpest to the 11 110 norm

ML keyword Can we approximate underlying target fat

by the fate for that can be
constructed by our learning alg



 

LContinuityT



Continuous function

Def A function f X Y between two metric spaces

X d Y d is called continuousatet if
07870 xeX darole d defas fool cE

falfif.ee
out

g
Lt

A function fix 4 is called continuous if it is

continuous for every to EX

If so 3870 week die to and defect feroke



Alternative definitions

fix 4 is continuous at to if for every

sequence Hulu C X we have

du to fita fito

A function f between
two metric spaces X dl 14 s is continuous

if and only if pre images of open sets
are open

B C Y open f B ex fate B open
linty in X
i YEX FHIEB



Uniformly continuous

A function f X 4 is called uniformlycontinuous if

so 7070 Y week die to ad d feet freaks

not unit cont

1

Given E I can choose of that

works for all to cannot choose or to bethe

same for all to

Intuition bounded derivative Intuition unbounded

derivative



Examples

f 30,13 IR feel is continuous but not

uniformly continuous

f c c IR for some constants fix

is continuous and uniformly continuous

the same function would not be uniformly coat if it

were defined on all of IR

Proposition let f a b IR be continuous Then it is

Fadyuniformly continuous



Lipschitz continuous

A function f 4 is called Lipschitz continuous

with Lipschitz constant L if

x y EX d feet fays L d x y

Intuition bounded derivative

Itf
Lm



Lipschitz cout uniformly cont

Proposition f Lipedite continuous f uniformly continuous

Proof easy

Non mat me other way round is
not true

fix o o IR h f

is uniformly continuous but not lipah.tt continuous



Intermediate value theorem

Them
If f a b IR is continuous then f attains all

values between fca and fro

by E fral f b x a b feel y

f

b
a b



Application finding zero

If you want to find with far O

find a with fca o

b with Cb 0

then there must exist Caib with fees 0

0

Bisection search



Inverse function

Let f A B be a function denote by flat is the

range of f A mpping g f A A is called the

inverse of f notation f if

go f id and Log id

Not every function has an inverse Example fits

Sometimes one also uses the notation f to denote

the pre image which does not need to be unique



Invertible function

D C IR f D IR continuous

notone acb fear fast Then

f is invertible and the inverse is continuous as well

Invertible follows from monotonicity

K
Continuity of the inouse follows directly from

cout of f



 

lsequenceoffunctionT



Pointwise convergence

Def Consider functions fu D IR D C R

We say that the sequence fuluen convergespointwis

to f D IR if

ED fact fee



Example

fu if 0,1 IR fact

Em

for
0

otherwise

this example also shows

Fn f pointwise all fu continuous this

does not imply that f is continuous



Uniform convergence

Def A sequence fuln of functions converges uniformly to f if

70 NEN n N D fuel fee Ʃ

pointwise

xeD VESO NEW Vas N fuses fit LE



Intuition

fu

uniform convince
f É f uniform

givenE then existN
such that all fu
with u N are

contained in
E tube

alwaysbe points not uniform

ftp.t f f

no

the redfats facts are only pointwise
not yet in E tube



Altunative definition

fu f uniformly iff 1 f 110 20

CCD f D IR f continuous is vector space

4 17g is a norm on ECD

If 110 sup fail
FD



Remark uniform converence pointwine



Uniform convergence preserves continuity

1ef f
o iRDcRfuarcontinuous

fu f uniformly Then f is continuous



Proof replacey
Consider E D Suppon some 0 is given

Observe that for every UEN

fool f x1 1 feed fused fund fuckilt face fix

Uniform convergence In IN such that for all x to E D

fulfil find

1 full fry I

Now consider the function fu By ass it is continuous so there exists

d o such that Ito led Ifu lol fact

Together we then get that for given so there exists d 0 such that for all x

to led I Ifitol fix E

So f is continuous at to



 

fDerivatives
1 dim

T



Derivative definition

Def U CIR an interval f U R The function f
is called dietableata U if

f ca him
t f

exists

We often write fical cat

chap



Juustration

iF

1 i

E



Differentiable functions

Df
The function f is called differentiable if it is differentiable

for all a E U It iscontinuously differentiable if it is diff and

the function f U R f'cal is continuous

For D C IR we denote

e D f D R R gut differentiable



Higher order derivatives

We can repeat the process of taking derivatives

f off f If
Notation f denotes the n th derivative if exists

e D f D IR f n times continuously differentiable



Differentiable implies continuous

ÉIf be differentiable at a Then there exists a constant ca

such that on a small ball around a we have

1 feel fca ca lx a

In particular f is continuous at a



Intermediate value them for derivatives

theorem f e C a b Then there exist a b such that

f f s

flbl

fiaf E.fi

frm eca

31
s



Exchanging him and derivative
fun

in.fi f
theorem cling
fu aib R fu e a b If the limit

fees his face exists for all e a b and the derivation

for counge uniformly
then if is cont differentiable and

we have we obtain f and then

f a Cents am
im fi First

compute all fu
then take limit of
there derivatives

Uniform invert is really important otherwise
would bewrong



 

L

IRiemann integralfa d.mg

assume that you know this

material already



Construction of the Riemann integral

Consider a function f a b IR assume

that f is bounded

71 a EIR Kx e a b 1 feel u

Consider to to xn
with

a to Ct Ctz Xu b

These points introduce a partition

of Caib into a intervals

In canal
fftt



Define my inf f In

Mk sup f In

exists because f is bounded

IT

in in



Define the lower sum mushof In
k un

s f fortnin tu E lful.mn

and the upper sum

S f toss a leal My

EHT.EE



Now define

Tx sup s f partition
partitions

iyf.nu
S f partition

we call f Riemanninterable if 1 It then we

denote

It f t dt



Monotone resp continuous fats are Riemann integrable

theorems f a b IR monotone integrable

i.e a a faint feel

f Tab R continuous integrable

even true if f is continuous everywhere except
at finitely many point



Many fats are not Riemann integrable

Example fare
Q

1gotherwise

rational uymbus

Ino RIQ

For any intural In Ctu then
Mn 1

Mr 0

Thus T 1ᵗ
1b al 0 lb al 1



Further shortcomings of the Riemann integral

One cannot prove theorems about exchanging integral

with lim his fudt himfor It

Hard to extend to other spaces

Lebesgue integral



 

fndamentaltheoremofcalcutus



Fundamental theorem of calculus

f a b IR Riemann integrable and
theoreffinuous

at a cab Let c gGift then the function

F x If CtldtI C

is differentiable at 3 and F 3 f 3

If f E E Caib then F e E Carb and

F x feel for all e a b

TheoremII F a b IR continuously differentiable then

I F t It F b F a



Algebraic version of the thm informal

n ialgbaicu s.in
The integral operator I Y aib carbs

with aib fee a b f c 0

is an isomorphism linear bijective and its

inverse is the differential operator



Proof Part I

ProofI Need to prove that F is diff at 3

Consider A n
F
3yhlFI

3 4

1 fetidt fetidt

5th

I f fat at
want to prove converges to f s

as h 3 0



at

Want to prove
doesnot

depend
a 113

ACh f S 0 out
i

Effanat EE if fn Ift
fit.it efeat if that intral over thewhich we
integrate

5th

If madatanetocontinuin.tt



Formally given 0 we can find 4 0 such that

fCH f s
E k t e 3 5 4

then

3 4 5th

1 fett feel at 1 I fch fail at

1 Me at E e at 1 e h E
J

n Theorem I



Proof part II

ProofII

know that F continuous Thus by theorem I the function

G x f f t It is differentiable and

i Gca 0 by def of G

i G x F x on a b by theorem I

Consider Hex FCA G x1



By ii we know that H ext F'Cti G 1 0 for all x

Hence It is a constant function

we know that Hra Ffa
Efm

Fla thus

iii Has F means constant

Consider b

Fca H b If F b G b If

Fcbl F CH at

b

IF'ctldt
F bl F a

m Th I



 

lPowerseriest



Powerseries

Def A series of the form poet is an x is

called a power series

A power
series pett an x courage if the

sequence of partial sums putti is 1 anth

courges in the usual sense as N 0



Radius of convergence

theorem Radius of convergence

For every power series pct and there exists a

constant r O r 0 called the radiusofconvergences

such that

The series courges for all x with 1 1 L r

If 1 15 r the series divergy

No general statement possible for 1 1 r



Computing the radius of convergence

The radius of courgence only depends on the Canin and

can be computed by various formulas

r p I then if me limit exists

r 1 where L lie p Ian 1 if thelineupexist



A first example

part Ʃ n x for some
constant c

n o

Radius of courgence

lim
time a

lim 1

independently of a



A first example cont

Ʃ has cour radius r 1

use in diner

For it 1 it courses

For 1 1 in no general statement but we can analyze it more closely

For 1 the series diverges because

Ʃ t Ʃ 1 Ʃ a

For x 1 it converges

2 Ent n 2

1 log 2



A first example cont

Eco

Courgence radius is still r 1

For 1 1 C A series courges

For 1 1 1 series diverges

For 1 1 1

th 1 N to diverges
in

1 Ʃ ath ath nt

does not sourge



More examples

Exponentialseries

ep et Eo th has r to

because I at m
an to

I n x has r 0 1 I cute at 0



From power series to Taylor series intuition

Observation Given power series ffas E.am
x aT

Let's take its derivative

f c ao ancx altazle.at agCt alt I

wouldneed an 2oz t a 3a t a

toprovethis E
n

t a

f cel

n 1
an n ca e a 2 n ker x a

k

flkless

In particular we have for a

f cal ank or stated otherwise ap fy1



From power series to Taylor series formally

theory Let for anti a with r 0 then for x with

Ix al or we have

feel
x a

n 0

If lutuition start with a power series
that converges Then

we had the neat formula of above

that epresses the coeff in
termsof derivation



Does this construction also work the otherway round

Does it work the other way round That is

g m any function possibly with nice assumptions

can we simply build the ser.es ice a and

hope that it converges to the function

fax



 

ltaylorseri.es



Taylor series

I CIR open interval f I IR

Theft quer J a E T Deline

Fᵗ
e a Taylor seriesTn x a

up to degree n

Rule a is f t at Remainder term

Then feet Tn x a Rn x a



i

iiie

Li

line is notsuch a good approx
line is a good approx of f wound on also need to look at curvature

fixt fralt f cal x at feet fral t t a It a
f

a



Proof

Proof follows from
Fundamental theorem by induction on n

Baen 0 need to prove

fee fca f t alt E Fundam Theorem

Yititi as

Take its derivative

Integrate and uploit fundamental
theorem

t



Taylor with Lagrange remainder

theory

f e e J a t e J Then there exists some

I such that

Rule a f s



roof Let a b

Consider two functions F G E E a b Assume

w

en.tt

sc
Now

EEFF.tn If romances

Assume that F'and G alsosatisfy ED We can iterate

We would obtain

II names cabs



Proof out

Now chose Fcxi feel Tnix a Rn t a

G Celie x a
t

For all k in OEK Eu we have by construction that

f ca Tu a so in particular

F ca 0 and we have 6ᵗʰ a 0



Proof out

For net we now have

F car f ces G ce un

By A we obtain

Fai Racial aces Ei
4 a

4th

Th f 31

Do



Taylor convergence

theorem f e 2 J t.ae

IelineTcelihiggTuces EEfa'cx a

Then we have fees Text if Rn x a 0

For example this is the case if there exist constants

α C 0 such that

1 f f α C Kte Knew

Follows directly from the Lagrangian remainder



Examples

Exponential series

expix It powerseries with r o

up always coincideswith its Taylor
n o series

fax log 1 x Taylor series about a 0

Can prove Convergence radius of Taylor series is r 1

For outside of 1 1 Taylor serin does not

make sense at all



Examples cont

feel
up

1 2 if to

0 x 0

Has the funny property that nein f 11 0

Consider the Taylor series derived about a 0

All toms will be 0 so kn Tu t O r o

but of course f is not O so we get

Kx 0 Tusel feel

Taylor series converges everywhere but not to the fat f






















































































skipped

flebesguemeasureonIT



Goal

Want to construct a measure on IR Want that rectangles of the

form anib az.be am but have the natural
n

volume given by I bi ail

s vol R acy.cz

And want nice mathematical properties



Earlier approathes

First approaches Jordan Riemann attempted the following

Outer approximation

jfD A c O rectangles
in

lunerapproximation

C A

A would be called measurable if outer and

inner approximation courage

Problem Too many sets turn out
to be not measurable e.g Q



Now generalization of this approach

Allow for countable coverings

Replace innerapproximation by an outer approx

of the complement

80k

1999094
outer approx of EI

N E EAI NCA

NCA E NIEIAL
Need 6 algebra as underlying structure



Outer Lebesgue measure

Set the natural volume of rectangles

R an.by Cariba Can by C 112

IRI In bi ai

Definition of outer Lebesgue
measure

Let A C R be arbitrary We define

a inf I Ril AC Ri Ri rectangle

We cow A by a countable union of rectangles then hate inf

observe 1 AI E IR v 0

Want to make this into a measure Problem if we use

PCIR as o algebra we run into contradictions

Need to restrict ourselves to a smaller 6 algebra



Measurable set

Danton We say that a
set A C R is measurable

if for all E C 112

E LEA NEIL

a
E

Denok by L all measurable subsets of 112



Outer measure as measure

the set 2 forms a 5 algebra on IR The

Tmeasut dtdatel facᵗam
i

IR L On rectangles it coincides with the not natural volume

Examples

1 3 0

1 IR a

A CIR countable The 1 11 0 In particular

Q is measurable and has 1 Q O



Proof sketch

For 70 define for all a EA the intural i yi such that

X Ai Ein Yi ait Ein

R

ti yi

A C tie

A 2 d tictic En En E
ien

Taking the inf on all coverings shows that AI 0



Comparing L o ag of Lebesgue
measurablesets with

the Borel r algebra B

11 B c 2

open
intervals are measurable thus in L

any open
sittin 112 can be written as a countable union

of open intervals A C I I open intervals

e For every Lebesgue
measurable set L there exist

a set B E B and N E L with A N O such that

L B U N

Summary L B up to sets of measure 0



 

SKIPPED

fanou measuables.tt



Construction quite abstract

Consider O 1 Deline an equivalence relation

on 0,1 as follows

x y x y e Q

a 7 would be equivalent

Consider the equivalence classes

Q a 19 a

a

Q

We pick a representative of each of
the classes and denote

by N the set of all such representations



N is not Lebesgue measurable

REon N is Lot Lebesgue measurable

Intuition
irrational

t.me f'I
0 1blackpoints Q

blue crosses x Q



Proof

T.IEIIwasie we now answer the

following sets
For q e

o 1C

Ng q
N v q n n n o n

t.fi MItIImc
9 1 9th

II



Proof Gout

If N is measurable then q N is measurable kg G o 1

and Ng N

0,1C U Ng
qE 917nA

Ng n Np Np Ng

Consequently UNg is disjoint

o additivity

can E.com.at Na

T Ta



Proof Gout

Could be that 1 Ng 0 But then

tinal 0

Could be that Na 0 But then

Ng a

4



 

SHIPPED

wT inhra.in



Intuition partition 4 instead of

Riemann

Ian

might

Lebesgue

Lta



Measurable fots

Def A function f X F Y G between two measurable

spaces is called measurables if pre imagesof measurable sets

are measurable

Geg f G E F

ex fat EG



Lebesgue integral for simple fats

Def 0 IR IR is called a simplefunctions it

thereexist measurable sets So CIR aier such that

d ai Si

Si Tai

For such a simple function we can define its Lebesgue integral as

add Etait Sil

IF
I



Lebesgue integral for non negative fat

For a non negative function ft IR 0,0 we define its

Lebesgue integral

f'd sup Sold 1 0 Ef a simple

might be to
approx f by simple fats
Note the sets Si can be

complicated sets not just
intervale



Lebesgue integral for general fats

For a general function f IR IR we split the function

into positive and neg part f f
t f

when fca feel it fees so
otherwise

Nok ft f are measurable iff

f

If both ft and 4 satisfy fidic o dy dico

then we call f integrable and define

f die fidel ff del



Much more powerful notion than
Riemann integral

Example A did 1 A CQ O



EIit.iiitia.in
that is pointwin non decreasing

x EIR fuen t fact a

Assume that all fa are measurable

and that the pointwise limit
exishe

Hx limfaces feel
Then

for de big fact de

him fuel de



ii id get on B g
t is

integrable Assume that the pointwise limit exists A E B

fees lying facts Then

feel de him face do
u 30



 

IPartialderivativest
ML
motivation

gradient
descent



Functions on IR

We now consider functions f IR IR

input space n dim output space
1 dim

the standard object in machine learning



Generalizing derivatives from 1 to u dimensions

Two obvious ideas

Consider the function fer f Fu as

function of one coordinate only and keep the

okers lined then apply 1 dim intuition

4 partial derivation

Approximate f locally by something linear

total derivative

As we will see leads to similar but not identical notions



Partial derivatives on IR

Consider f IR IR

Def f is called partially differentiable with resp to

variable x at point 3 112 if the 1 dim function

g IR IR intuition fix

9 Xi f 31,32 3g xj jan 1 5
all arguments
exceptthe jth

is differentiable at 3 EIR



i th unitvector

Notational whid we
evaluate

pa
airatin

ponstant
0

n.pt
c3

Of 3 him

variable wrt which we compute
marinin

round delta sign



Gradient

If all partial
derivation exist then the rector of all

partial derivation is called the

in
grad f S Tf s 112

o



Jacobian matrix

If f IR IRM we decompose into its m

component functions f Fin We define the

Jacobian matrix

2
Gradft

f x RM1



Existence of Gradient continuity of f

For functions f IR 1 R we know that if f is differentiable

then it is continuous Note that in the u dim

case the existence of a gradient is not enough for this

Even if all partial derivatives exist at 5 we do not

know whether f is continuous at 5

Need stronger notions
total derivative



Example
f R IR fogy yr if acyl Coco

o if x y 0

One can prove that the two partial
derivatives at 0,0 exist

and are both 0 but the function f is not continuous at 0

Exercia



 

Totaldrivati.ve



Differentiable fat

f IR IRM 5 E U it is dilutable at 3 if there exists

a Lemapping L
IR RM such that for h ER

f 5th f s h er h

with him
0

37impi.EE

1 Fi
t

approxby
a line



differentiable refer to the existence

of the total derivation
not the partial ones

as we will see total derivative partial derivation



Differentiable continuous gradient

theores f 112 112 differentiable at 3

11 then f is continuous at

21 The linear functional L
coincides with the gradient

h If
Exiles h era

grad fA h t r 4

special can h e Then E 31 hi It _initial
derivah



7 If f IR
1129 it is differentiable if all coordinate functions

fr fun are differentiable Then all partial derivatives exist and

L 41 Jacob matrix h

Theorem says If total derivative exists then we can use the

partial derivative to compute it

Is ther also a theorem that starts with the partial derivatives

and then derives the total one

Yes



Continuouspartial derivatives differentiable

Theory If all partial derivatives exist and are all continuous

then f is differentiable



 

firectionaldrivativesT



Directional derivatives

Def Assume f 112 IR is cont differentiable v e R with Hull 1

The directional derivative of f at 3 in direction of

is defined as

71
ER

direction

Prf 31 him
f c

h
h 30

Observe partial derivatives are
directional derivatives in the direction of the

unit vectors



Differentiable directional derivatives and gradient

Theores f IR IR differentiable in 5 Then all the

directional derivatives exist and we can compute them by
partial

der

Drf 131 gradf v Ʃ vi
8

s

in

i



Largest ascent along gradient
Proposition f 112 IR differentiable at then the largest value Dr f s

among the dir
derivatives v is attained in direction of the gradient

all

Prostitution
I Dufess mar 14 peeping

b went

Villull 1 you drop
and

7 011 11
g

i
independent of

may not 3 11 Hull 1041314
V llull 1

he particular for us we have

Dv 13 artist Iff
121

s the maximum is
attained for this device of v and the inequality

becomes an equality



Illustration of the gradient



 

IHigherorderderivativest



Higher order derivatives

Consider f IR IR assume it is differentiable

so all partial derivatives 3 IR IR exist If the partial

derivatives are differentiable themselves we can take their derivatives

Ei Tfa

These are called second order partial derivatives



Attention order matters

In general we cannot change the order of derivatives

2



Example

fill IR fatty 122

satin

Have 3 0 y y for all y

1 1 0

It x 01 0 all

Consequently thetwo

derivatives donotagree
on point 0,0



Hessian

Def Hessian matrix

f IR 112 then we define the Hessian of f at point by

Hf cat is 2 2
let cg n in



Be aware of different dimensionality

f IR IR function

Df IR 112 first derivative a partial deriv I

Hf R 112 second derivative

m partial derivatives
8

7



Continuously differentiable fats

Def we say that f IR R is continuously differentiable

if all partial derivatives It exist and are continuous

We say that f is twice continuously differentiable if

f is is continuously differentiable and all partial

derivation 3 are again continuously differentiable

Analogously k times cont differentiable

Notation Ek IR IRM f 12 112 k times cont

diff

2 IR RM ft P 12 so often cont

diff



Continuously diff can change order

Schwartz Assume that f is twice continuously

IIu tiable Then we can exchange the order in which we take

partial derivatives

an

Analogously k times cont diff can exchange order of first
k partial derivatives



 

Minimalmatimate



Critical point

Def f IR IR differentiable If Vf Cx

then we call a cricalpoint

A critical point can have many
different geometric

meanings



Minimum

1 11 IR f has a local minimum at to if there exists 0 such that

x Be to f x feto

f has a strict local minimum at to if there exists 70 such that

Kee Be to fee feto

f has a global minimum
at to if x 112 fat f to

f has a strict global minimum at to if x 112 fee fito

localmin notstrict

strict localm

fake



Saddle point
If f is differentiable and to is a critical point that is

neither a local minimum or maximum then we call it

a saddle point

all partial derivatives
are Zero



How can we find out which case we have

Intuition in 1 dim case second derivatives might help

Shrist local min striit local wax saddle pt

nL
f its o f 1 1 0 f n o

f ext o f ex co f x o



Critical points and the Hessian
H issymmetric

f R R f e e IR Assume that to is

MeTTcitical
point i e Of to 0 then

i If to is a local minimum maximum then the Hessian

Hf xo is positive semi definite neg semi def

ii If Hecto is positive definite neg definite then to

is a strict local min max

If Hf to is indefinite then to is a saddle point

negative and positive eigenvalues



In 111 we can have a f local max yet thehessian is

only semi definite Example fly at 0

In 2 if the Hessian is semi definite no statement

can be made



 

Derivationofpopulartmatrix ve stor funitions



Example Linear least squares

Given training points tri g th
eRd Yn Yu ER

data by a linear least squares problem Find a linear function

f Ird IR that minimizes the leastsquares error

in matrix notation
Rmd Y

f Rd R f x wit with parameter vector

determine w as objectivefat
2

min Ʃ cti.ws it wmaialtw
weird in in

flti g w



Solution by foot

To optimize for w need to take derivative of the objection fat to
0

29 to

To compute the gradient by foot
is pretty cumbersome

n d 2

Writefat coordinate with g wit y E in wu

Take partial derivatives

xii life Entina
j n



Observe that we can write result using matrices

Fii xii 2ft Entina
j n

Fifi

2

f i

Dg w 2 Xt y Xw

observe Syntax close to 1 dim case

g wt y a w

g w x y w 2 2x y w



The matrix cookbook

lookup table cookbook for gradients

of many important functions



Examples for functions of vectors f IR IR

f.ci atx aer linear fat
La 7

2 a 112

fix A x quadratic fit

If A At x EIR



Examples for functions of matrices f 112 IR

f X at 5 for a er b 112m

If a bt 112
m

in

f x1 at XᵗCXb for a firm be 112 Ce 11ᵗʰ
Time Ten him'men

If Ctxab CXbat



Examples for functions of matrices f 11 IR

text tr x 22 I 112 trace

f X HCA x FE A

text t MAX Ex A Atx

fix def X Determinant

2 det x 1 x

2ᵈ det A A



Examples for functions of matrices f 112 IR

f A A fig A Inverse

1ft Cain Car


