Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Assignment 02 Mathematics for Machine Learning

Submission due Friday 01.11.24, 12:00 via Ilias

Justify all your claims.

Exercise 1 (Change of Basis, $2 + 2 + 1$ points). Consider the linear map $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ with $T(x) = (-x_1, x_2, 2x_3)^T$ for $x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$. Consider the standard basis $\mathcal{B} = \{e_1, e_2, e_3\}$ and the basis $\mathcal{C} =$ $\sqrt{ }$ $\left| \right|$ \mathcal{L} $\sqrt{ }$ $\overline{1}$ 1 2 3 \setminus $\big\}$, $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 2 \setminus \vert , $\sqrt{ }$ $\overline{1}$ $\overline{0}$ 1 1 \setminus $\overline{1}$ \mathcal{L} \mathcal{L} \int of \mathbb{R}^3 .

- a) Find the matrix $M(T, \mathcal{B}, \mathcal{B})$ which corresponds to the linear map T.
- b) Find the transformation matrices $M(\mathrm{Id}, \mathcal{B}, \mathcal{C})$ and $M(\mathrm{Id}, \mathcal{C}, \mathcal{B})$.
- c) Find the matrix $M(T, \mathcal{C}, \mathcal{C})$.

Exercise 2 (Matrices, $1+1+1+1+1$ points).

Consider the differentiation operator $D = d/dt$: $\mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{R}}$, $f \mapsto f'$ on the vector space $\mathbb{R}^{\mathbb{R}}$ of all real functions. Below we give different choices of bases W . For each of them, we consider the corresponding subspace $\mathcal{U} := \text{span}(\mathcal{W})$ and the restricted linear map $D|_{\mathcal{U}}: \mathcal{U} \to \mathbb{R}^{\mathbb{R}}$, which is the differentiation operator just applied to vectors in U. Decide whether range($D|_{\mathcal{U}}$) $\subseteq \mathcal{U}$ and if so, state the matrix $\mathcal{M}(D|\mathcal{U}, \mathcal{W}, \mathcal{W})$.

- a) $\mathcal{W} = \{e^t, e^{2t}\}\$
- b) $W = \{1, t^2, t^4\}$
- c) $W = \{e^t, te^t\}$
- d) $W = \{\sin t, \cos t\}$
- e) $W = \{t, (\sin t)^2, (\cos t)^2, \sin t \cos t\}$

Exercise 3 (Eigenvalues, 2+3 points).

- a) Let $A \in \mathbb{R}^{n \times n}$ with $A^k = 0$ for some $k \in \mathbb{N}$. Prove that, if λ is an eigenvalue of A, then $\lambda = 0.$
- b) Let V be a finite-dimensional vector space and $T: V \to V$ a linear map such that every $v \in V$ with $v \neq 0$ is an eigenvector of T. Prove that $T = \lambda \operatorname{Id}$ for some $\lambda \in \mathbb{R}$.

Exercise 4 (Power Method, 1+4 points).

Let $A \in \mathbb{R}^{n \times n}$ be a diagonalizable matrix with one unique largest eigenvalue, that is, $|\lambda_1|$ $|\lambda_2| > ... > |\lambda_n|$, where λ_i are the eigenvalues. We furthermore assume $\lambda_1 > 0$.

We consider the *power method*, a method to numerically estimate an eigenvector to the largest eigenvalue λ_1 . For an arbitrary initial vector $x_0 \in \mathbb{R}^n$ we recursively define

$$
x_{k+1} := \frac{Ax_k}{||Ax_k||}.
$$

- a) Prove that $x_k = \frac{A^k x_0}{||A^k x_0||}$.
- b) Consider a basis of eigenvectors $v_1, ..., v_n$, where v_i belongs to λ_i , and the representation

$$
x_0 = c_1v_1 + \ldots + c_nv_n.
$$

Prove that, if $c_1 \neq 0$, the sequence x_k converges to an eigenvector of λ_1 for $k \to \infty$.