Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Presence sheet 11 Mathematics for Machine Learning

Tutorial of Week 12 (13.01. - 17.01.2025)

Exercise 1 (The black sheep).

A shepard has one black sheep. Each day they buy new white sheep, add them to the herd and afterwards pick a random sheep from the herd uniformly and independently from the previous days and shear it.

- a) Assuming one white sheep is bought every day, what is the probability of the black sheep to be shorn infinitely many times?
- b) Assuming n white sheep are bought on day n, what is the probability of the black sheep to be shorn infinitely many times?

Exercise 2 (Borel-Cantelli).

In the second part of the Borel-Cantelli Lemma, the events are asked to be independent. Find a counter-example to prove that this assumption is indeed necessary.

Exercise 3 (Bernstein inequality).

Let X_1, \ldots, X_n be independent random variables with zero mean and $|X_i| < 1$ for all $i \in \{1, \ldots, n\}$. Define $\sigma^2 := \frac{1}{n} \sum_{i=1}^n \operatorname{Var}(X_i)$ and $S_n := \frac{1}{n} \sum_{i=1}^n X_i$.

a) For t > 0 show that

$$P\left(|S_n| > t\right) \le 2\exp\left(-\frac{nt^2}{2(\sigma^2 + \frac{t}{3})}\right).$$

b) Derive a lower bound for n that guarantees

$$P\left(|S_n| > t\right) \le \delta$$

for t > 0 and $0 < \delta \leq 1$.

Exercise 4 (Continuous-Mapping Theorem).

Consider a sequence of *d*-variate random vectors X_n that converges almost surely to a random vector X and a measurable function $f : \mathbb{R}^d \to \mathbb{R}^k$. Let $D_f = \{x \in \mathbb{R}^d | f \text{ is continuous at } x\}$ with $P\left(X \in D_f^C\right) = 0$. Then, $f(X_n) \to f(X)$ almost surely.