Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Presence sheet 09 Mathematics for Machine Learning

Tutorial of Week 10 (16.12. - 20.12.2024)

Exercise 1 (σ -Algebra).

a) Consider the set $\Omega = \{1, 2, 3, 4\}$. Is the following set $\mathcal{F} \subset \mathcal{P}(\Omega)$ a σ -algebra on Ω ?

 $\mathcal{F} = \{\emptyset, \{3\}, \{1, 2\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 3, 4\}\}$

- b) Let Ω be a non-empty set and $A \subseteq \Omega$. Compute the σ -algebra $\sigma(A)$ generated by A.
- c) Find all σ -Algebras on $\Omega = \{0, 1, 2\}$.

Exercise 2 (Joint, marginal, conditional distribution).

Consider two random variables X and Y, where $X \in \mathcal{X} = \{\text{Sun, Rain, Snow}\}$ describes the weather and $Y \in \mathcal{Y} = \{\text{Few, Many}\}$ describes how many pedestrians are taking a stroll. The joint distribution of X and Y is given by the following table, which contains the probabilities P(X = x, Y = y):

	Few	Many
Sun	0.1	0.4
Rain	0.27	0.03
Snow	0.06	0.14

- a) Compute the probabilities of the following events:
 - Many pedestrians on a sunny day or few pedestrians on a rainy day.
 - The sun shines.
 - The sun shines given that many pedestrians take a stroll.
- b) Are X and Y independent?

Exercise 3 (Lebesgue-measure).

Consider the measure space $(\mathbb{R}, \mathcal{B}, \lambda)$ where \mathcal{B} is the Borel- σ -Algebra on \mathbb{R} and $\lambda : \mathcal{B} \to \mathbb{R}$ denotes the Lebesgue measure. Find a function $f : \mathbb{R} \to \mathbb{R}$ with $f \neq 0$ that is almost surely zero with respect to the Lebesgue measure.

Exercise 4 (Variance). Show that $Var(X) = E(X^2) - E(X)^2$.

Exercise 5 (Uniform distribution).

Consider the measure space $(\Omega, \mathcal{P}(\Omega), P)$ with $\Omega = \{1, \ldots, n\}$ and $P(\{i\}) = \frac{1}{n}$.

- a) Show that $(\Omega, \mathcal{P}(\Omega), P)$ is a probability space.
- b) How does the cumulative distribution function (cdf) look like?