Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Presence sheet 05 Mathematics for Machine Learning

Tutorial of Week 06 (18.11. - 22.11.2024)

Exercise 1 (Convergence).

Consider the sequence $(a_n)_{n \in \mathbb{N}} \subset [-2, 2]$ with $a_n = (-1)^n \left(1 + \frac{1}{n}\right)$

- a) Is it convergent?
- b) Find all accumulation points.

Exercise 2 (Convergence).

Find a sequence $(a_n)_{n \in \mathbb{N}} \subseteq I \subseteq \mathbb{R}$ with $a_n \in \mathbb{R}$, such that

- a) it is a Cauchy sequence but does not converge on I.
- b) it has exactly 3 accumulation points.
- c) it has exactly $m \in \mathbb{N}$ accumulation points.
- d) it has exactly one accumulation point but does not converge.

Exercise 3 (Convergence).

Decide if the following conjecture is true. If yes, prove it, if no, find counterexamples. Conjecture: For every sequence $(a_n)_{n \in \mathbb{N}}$ with $a_n \in \mathbb{R}$ it holds that

$$\lim_{n \to \infty} \frac{a_n + \frac{1}{n}}{a_n} = \lim_{n \to \infty} \frac{a_n}{a_n} = 1.$$

Exercise 4. Consider a function $f : \mathbb{R} \to \mathbb{R}$ with f(1) = 1. Which of the following statements implies that there exists a point $x \in \mathbb{R}$ such that f(x) = 0.

- a) f is continuous and f(10) = -1.
- b) f is strictly monotonically decreasing and f(10) = -1.

Exercise 5 (Taylor Series).

Consider a function $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = e^x$ and a = 0.

- a) Calculate the Taylor series up do degree 3, that is, $T_3(x, a)$.
- b) Calculate the Lagrangian remainder term $R_3(x, a)$ for some ξ that lies between a and x.