Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Presence sheet 02 Mathematics for Machine Learning

Tutorial of Week 03 (28.10. - 01.11.2024)

Exercise 1 (Rank-Nullity Theorem).

Consider the following matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{pmatrix}$$
(1)

which describes a linear map $T : \mathbb{R}^4 \to \mathbb{R}^3$ by T(x) = Ax.

- a) Determine the rank of A.
- b) Determine the dimension of the kernel of A.
- c) Determine a basis of the image and a basis of the kernel of A.

Exercise 2 (Rank and Inverse).

Consider the following matrix

$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$
 (2)

- a) Is A invertible?
- b) If yes, calculate the inverse A^{-1} .

Exercise 3 (Determinant).

Calculate the determinant of the following matrices

a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
.
b) $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{pmatrix}$.
c) $C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 4 \\ 0 & 8 & 9 \end{pmatrix}$.

Exercise 4 (Rotation matrix).

- a) Consider the rotation matrix $A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$. Show that A has no real eigenvalues. Try to understand where the name "rotation matrix" comes from!
- b) Find a (non-diagonal) matrix $A \in \mathbb{R}^{2 \times 2}$ with exactly one (real) eigenvalue.

Exercise 5 (Eigenvectors).

Consider the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

- a) Find one eigenvector of A for eigenvalue $\lambda_1 = 3$.
- b) Find one eigenvector of A for eigenvalue $\lambda_2 = 1$.
- c) Are there more than one eigenvector for each eigenvalue?
- d) Are there more eigenvalues?

Exercise 6 (Eigenspaces).

Consider the matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

- a) Calculate the eigenspace of A for eigenvalue $\lambda_1 = 1$, that is, E(1, A).
- b) Calculate the eigenspace of A for eigenvalue $\lambda_2 = 2$, that is, E(2, A).
- c) Find a different basis of E(1, A) and E(2, A).
- d) What is the geometric multiplicity of λ_1 and λ_2

Exercise 7 (Inverse matrices).

Assume you take "just any" 3x3 matrix. Intuitively, what do you think is more "likely": that it is invertible or not? Discuss informally.