Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Presence sheet 01 Mathematics for Machine Learning

Tutorial of Week 02 (21. - 25.10.2024)

Exercise 1 (Diagonal Matrix).

Consider the diagonal matrix

$$A = \begin{pmatrix} a & 0\\ 0 & b \end{pmatrix}.$$
 (1)

- 1. Calculate A^2 .
- 2. Calculate A^n for any $n \in \mathbb{N} \setminus \{0\}$.

Exercise 2 (Basis).

Consider the following sets of vectors in \mathbb{R}^3 . Decide which of them are bases of \mathbb{R}^3 .

1.
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \subset \mathbb{R}^{3}$$
2.
$$\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\2 \end{pmatrix} \right\} \subset \mathbb{R}^{3}$$
3.
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\} \subset \mathbb{R}^{3}$$
4.
$$\left\{ \begin{pmatrix} 1\\4\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\} \subset \mathbb{R}^{3}$$
5.
$$\left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\} \subset \mathbb{R}^{3}$$

Exercise 3 (Basis and Dimension).

Consider the subset $S := \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\} \subset \mathbb{R}^3$.

- 1. Is S a subspace of \mathbb{R}^3 ?
- 2. Find a basis of S.
- 3. What is the dimension of this subspace?

Exercise 4 (Linear maps).

Decide whether the following maps are linear:

- 1. $T : \mathbb{R} \to \mathbb{R}$ with $T(x) = x^2$
- 2. $T : \mathbb{R}^3 \to \mathbb{R}$ with $T((x, y, z)^T) = 3x y + z$
- 3. $T : \mathbb{R}^2 \to \mathbb{R}^2$ with $T((x, y)^T) = (x + y, x y)^T$

Exercise 5 (Linear maps and matrices).

Consider the two bases $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}$ of the vector space \mathbb{R}^2 and the identity mapping $Id : \mathbb{R}^2 \to \mathbb{R}^2$ with Id(v) = v. Find the following matrices:

- 1. $M(Id, \mathcal{B}, \mathcal{B})$
- 2. $M(Id, \mathcal{C}, \mathcal{C})$
- 3. $M(Id, \mathcal{B}, \mathcal{C})$

Exercise 6 (Linear maps and matrices).

Consider three vector spaces V_1, V_2 and V_3 of different dimension, that is, $dim(V_1) = n, dim(V_2) = m, dim(V_3) = k$ and $n \neq m \neq k$.

Let \mathcal{B}_1 be a basis of V_1 , \mathcal{B}_2 a basis of V_2 and \mathcal{B}_3 a basis of V_3 . Additionally consider another basis $\tilde{\mathcal{B}}_2$, which is a basis of V_2 .

Now consider two linear maps $S: V_1 \to V_2$ and $T: V_2 \to V_3$. Discuss whether the following equations hold:

- 1. $M(T \circ S, \mathcal{B}_1, \mathcal{B}_3) = M(T, \mathcal{B}_2, \mathcal{B}_3) \cdot M(S, \mathcal{B}_1, \mathcal{B}_2)$
- 2. $M(T \circ S, \mathcal{B}_1, \mathcal{B}_3) = M(T, \tilde{\mathcal{B}}_2, \mathcal{B}_3) \cdot M(S, \mathcal{B}_1, \mathcal{B}_2)$