Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Assignment 11 Mathematics for Machine Learning

Submission due Friday 17.01.2025, 23:59 via Ilias

Justify all your claims.

Exercise 1 (Convergence of random variables, 3+2+2 points).

a) Consider the probability space $([0, 1], \mathcal{B}, \lambda)$, where \mathcal{B} denotes the Borel- σ algebra on [0, 1]and λ the Lebesgue measure. For every $n \in \mathbb{N}$ there exist unique $h, k \in \mathbb{N}_0$ with $0 \le k < 2^h$ such that $n = 2^h + k$. We define a sequence of random variables X_n using these h, k as

$$X_n(\omega) = \mathbb{1}_{\left[\frac{k}{2^h}, \frac{k+1}{2^h}\right]}(\omega) = \begin{cases} 1, & \omega \in \left[\frac{k}{2^h}, \frac{k+1}{2^h}\right] \\ 0, & \text{otherwise} \end{cases} \quad \forall \omega \in [0, 1].$$

Prove that $X_n \to 0$ as $n \to \infty$ in probability and in L^1 , but not almost surely.

- b) Consider a sequence of random variables X, X_1, X_2, \ldots that satisfies $X_n \to X$ in probability as $n \to \infty$. Prove that there exists a subsequence $(X_{n_k})_{k \in \mathbb{N}}$ for which $X_{n_k} \to X$ almost surely as $k \to \infty$.
- c) Find such a subsequence for the sequence given in a).

Exercise 2 (Limit theorems, 2+3 points).

- a) A laundry bag contains one black and one white sock. Now Tom keeps throwing socks into the laundry bag. Every sock he throws is either black with probability $p \in [0, 1)$ or white with probability 1 - p, independently of the previous socks. Let X_n be the fraction of black socks to total amount of socks and Y_n the fraction of black to white socks after $n \in \mathbb{N}$ throws. Prove that
 - (a) $X_n \to p$ almost surely as $n \to \infty$,
 - (b) $Y_n \to \frac{p}{1-n}$ almost surely as $n \to \infty$.
- b) Consider an i.i.d. sequence of real-valued random variables $(X_n)_{n \in \mathbb{N}}$ with $\mu = \mathbb{E}[X_1] \in \mathbb{R}$ and $\sigma^2 = \operatorname{Var}[X_1] < \infty$. Define $S_n \coloneqq \sum_{k=1}^n X_k$ and let $a, b \in \mathbb{R}$ with a < b. Use the central limit theorem to prove

$$P(a \le S_n \le b) = \Phi\left(\frac{b - n\mu}{\sqrt{n\sigma}}\right) - \Phi\left(\frac{a - n\mu}{\sqrt{n\sigma}}\right) + o(1)$$

where Φ denotes the cumulative distribution function (cdf) of the standard normal distribution and o(1) satisfies $o(1) \to 0$ as $n \to \infty$. Hint: You may use the characterization

$$X_n \xrightarrow[n \to \infty]{} X \text{ in distribution} \quad \Leftrightarrow \quad F_n \xrightarrow[n \to \infty]{} F \text{ uniformly on } D_F,$$

where F_n and F denote the cdf's of X_n and X, and $D_F = \{x \in \mathbb{R} \mid F \text{ is continuous at } x\}$.

Exercise 3. (Estimation error in learning theory, 3+2+2+1 points)

Let $(X, Y), (X_1, Y_1), ..., (X_n, Y_n)$ be i.i.d. random variables $\Omega \to \mathbb{R}^d \times \mathbb{R}$ and consider a finite set \mathcal{H} of measurable prediction functions $h : \mathbb{R}^d \to \mathbb{R}$.

For a measurable loss function $l: \mathbb{R} \times \mathbb{R} \to [0,1]$ we define the empirical risk of a predictor h as

$$R_n(h) := \frac{1}{n} \sum_{i=1}^n l(h(X_i), Y_i)$$

and its true risk by

$$R(h) := \mathcal{E}(l(h(X), Y)).$$

a) Let $\varepsilon > 0$. Prove that for the event $A_n := \{ \sup_{h \in \mathcal{H}} |R_n(h) - R(h)| \ge \varepsilon \}$ it holds

$$P(A_n) \le M \cdot \mathrm{e}^{-2n\varepsilon^2}$$

for some constant M > 0.

- b) Let $h \in \mathcal{H}$ be fixed. Prove that $R_n(h) \to R(h)$ almost surely as $n \to \infty$.
- c) Define

$$h_n \coloneqq \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} R_n(h) \quad \text{and} \quad h^* \coloneqq \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} R(h) \,.$$

Prove that $R(h_n) \to R(h^*)$ almost surely as $n \to \infty$. Hint: Show and use that

$$R(h_n) - R(h^*) \le 2 \sup_{h \in \mathcal{H}} |R_n(h) - R(h)|.$$

d) The result of c) does not hold any more in general if \mathcal{H} is not finite. Explain why.