Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Assignment 09 Mathematics for Machine Learning

Submission due Friday 20.12.2024, 23:59 via Ilias

Justify all your claims.

Exercise 1 (σ -Algebra, 3 points).

Let X be a countable set and \mathcal{A} a σ -Algebra on X, which separates points, that is, for any $x_1, x_2 \in X$ with $x_1 \neq x_2$ there exists a set $A \in \mathcal{A}$ such that $x_1 \in A$ and $x_2 \notin A$. Show that $\mathcal{A} = \mathcal{P}(X)$, where $\mathcal{P}(X)$ is the power set of X.

Hint: Show and use that a σ -Algebra is closed under countable intersection.

Exercise 2 (Covariance and correlation, 2+1+3 points).

Consider the probability space (Ω, \mathcal{A}, P) , the measurable spaces $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ and two random variables $X, Y \in L^2(\Omega, \mathcal{A}, P)$ with $X : \Omega \to \Omega_1$ and $Y : \Omega \to \Omega_2$.

- a) Consider two measurable functions $f : \Omega_1 \to W_1$ and $g : \Omega_2 \to W_2$ for the measurable spaces (W_1, \mathcal{F}_1) and (W_2, \mathcal{F}_2) . Show that the independence of X and Y implies the independence of f(X) and g(Y).
- b) Prove that the correlation coefficient satisfies $\rho_{X,Y} \in [-1, 1]$.
- c) Consider the following concrete setting of two independent dice throws:

$$\Omega = \Omega_1 = \Omega_2 = \{1, \dots, 6\}$$
$$\mathcal{A} = \mathcal{A}_1 = \mathcal{A}_2 = \mathcal{P}(\Omega)$$
$$P(X = k) = P(Y = k) = \frac{1}{6} \text{ for all } i \in \{1, \dots, 6\}$$

Assume that X and Y are independent and compute the correlation coefficient ρ_{W_1,W_2} for $W_1 := X + Y$ and $W_2 := X \cdot Y$.

Exercise 3 (Bernoulli trials, 2+2+1 points).

A Bernoulli trial is a random experiment with only two outcomes, "success" and "failure". Assume that the probability of success is $p \in (0, 1)$. This Bernoulli trial is now repeated arbitrarily often, where the outcome of each trial is independent of the other trials.

For $n \in \mathbb{N}$, let K_n denote the number of successes within the first n trials, T_1 the number of failures until the first success, and T_2 the total number of failures until the second success.

- a) Prove that $K_n \stackrel{d}{=} B(n,p)$ for any $n \in \mathbb{N}$. This means that K_n is distributed as the binomial distribution B(n,p), which is defined by $B(n,p)(\{k\}) = \binom{n}{k}p^k(1-p)^{n-k}$ for $k \in \{0,\ldots,n\}$.
- b) Compute the distribution of T_1 , T_2 , and $X \coloneqq T_2 T_1$.
- c) Are X and T_1 independent? (Prove your answer.)

Exercise 4 (Independence, 4+2 points).

Consider the probability space (Ω, \mathcal{B}, P) for the Borel- σ -Algebra \mathcal{B} and a real valued random variable $X : \Omega \to \mathbb{R}$.

- a) Show that X is independent of itself if and only if it is almost surely constant. Hint: Use that $P(X = c) = P(X \le c) - P(X < c)$ for a constant $c \in \mathbb{R}$.
- b) Deduce from a) that X is independent of f(X) for a measurable function f if and only if f(X) is almost surely constant.

Hint: You can use all other exercises on this sheet.