Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Assignment 07 Mathematics for Machine Learning

Submission due Friday 06.12.24, 23:59 via Ilias

Justify all your claims.

Exercise 1 (Newton method vs. Gradient Descent, 1 + 3 + 2 points). Consider the quadratic optimization problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^t Q x - b^t x$$

for $Q \in \mathbb{R}^{n \times n}$ symmetric and positive definite and $b \in \mathbb{R}^n$.

- a) Show that the optimal solution is $x^* = Q^{-1}b$.
- b) To solve the optimization problem iteratively we can use Gradient Descent (GD), which updates the optimal solution in each step by

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

for some step size α . Show that for stepsize $\alpha^* = \frac{2}{\lambda_{\min} + \lambda_{\max}}$ the error converges with

$$||x_{k+1} - x^*|| \le \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right) ||x_k - x^*|$$

where λ_{\max} and λ_{\min} are the maximal and minimal eigenvalues of matrix Q. Hint: Use the inequality $||Av|| \leq ||A||_2 \cdot ||v||$ for an arbitrary vector $v \in \mathbb{R}^n$. You don't need to show it.

c) Another possibility to solve the problem is using the Newton method which updates the optimal solution in each step by

$$x_{k+1} = x_k - H^{-1} \nabla f(x_k)$$

where H denotes the Hessian matrix. Show that the Newton method converges to the optimal solution in one step irregardless of the choice of x_0 .

Exercise 2 (Convexity and Continuity, 1+3+1 points). Consider a convex function $f : [a, b] \to \mathbb{R}$ for $a < b, a, b \in \mathbb{R}$.

a) Prove that for any $x, y, z \in [a, b]$ with x < y < z it holds that

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x} \le \frac{f(z) - f(y)}{z - y}.$$

What does this mean geometrically?

- b) Show that f is continuous on (a, b). Hint: Use a) to bound the slope of the line segment between x_0 and an arbitrary point x
- c) Is f also continuous in a and b? Give a proof or find a counterexample!

Exercise 3 (Convexity, 2+2 points).

Consider a function $f : S \to \mathbb{R}$ on a non-empty convex set $S \subseteq \mathbb{R}^d$. Prove the following statements:

a) f is convex if and only if

$$f\left(\sum_{i=1}^{n}\lambda_{i}x_{i}\right) \leq \sum_{i=1}^{n}\lambda_{i}f(x_{i})$$

for all $n \ge 2, x_1, \ldots, x_n \in S$ and $0 \le \lambda_i, i \in \{1, \ldots, n\}$ with $\sum_{i=1}^n \lambda_i = 1$.

b) For positive x_1, \ldots, x_n the following inequality holds

$$\frac{1}{n}\sum_{i=1}^{n}x_i \ge \left(\prod_{i=1}^{n}x_i\right)^{\frac{1}{n}}.$$

Hint: Think of a concave function that might help here. Remember to show that it is concave.

Exercise 4 (Dual problem, 3+2 points).

a) Use the method of Lagrange multipliers to solve the following problem.

$$\max x + y$$

subject to $x^2 + 2y^2 \le 5$

Is the constraint active? Do you have a geometrical explanation of why the constraint should be active or inactive?

b) Consider the linear program

$$\max_{x \in \mathbb{R}^d} c^t x$$

subject to $Ax - b \le 0$

for $c \in \mathbb{R}^d$, $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$. Show that the dual of a linear program is again a linear program.

Hint: Derive the dual problem. When is it feasible?