Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Assignment 06 Mathematics for Machine Learning

Submission due Friday 29.11.24, 23:59 via Ilias

Justify all your claims.

Exercise 1 (Extremal points, 2+1+2 points). Consider the function $f: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto x^3 + 1/3y^3 - 12x - y$.

- a) Compute the set of critical points for f and classify them into local minima, local maxima, or saddle point.
- b) Does f have a global minimum or global maximum?
- c) Consider the function $g: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto \alpha x^2 e^y + y^2 e^z + z^2 e^x$ with $\alpha \in \mathbb{R}$. For which values of α is (0, 0, 0) a local minimum, local maximum, or saddle point?

Exercise 2 (Derivatives, 2+3 points).

For the following functions, check whether all the directional derivatives exist in (0,0) and whether the total derivative exists:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $(x_1, x_2) \mapsto \begin{cases} \frac{x_1 x_2}{\sqrt{x_1^2 + x_2^2}} \sin\left(\frac{1}{\sqrt{x_1^2 + x_2^2}}\right), & (x_1, x_2) \neq 0\\ 0, & (x_1, x_2) = 0 \end{cases}$
b) $g: \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto \begin{cases} \frac{x_1^3 x_2}{x_1^4 + x_2^2}, & (x_1, x_2) \neq 0\\ 0, & (x_1, x_2) = 0 \end{cases}$

Exercise 3 (Taylor series, 3 points).

The multivariate Taylor series of a smooth function $f : \mathbb{R}^d \to \mathbb{R}$ around some point $p \in \mathbb{R}^d$ is given by

$$\sum_{n=0}^{\infty} \sum_{\substack{\alpha \in \mathbb{N}_0^d \\ \alpha_1 + \dots + \alpha_d = n}} \frac{1}{\alpha_1! \cdots \alpha_d!} \cdot \frac{\partial^n f}{(\partial x_1)^{\alpha_1} \cdots (\partial x_d)^{\alpha_d}} (p) \cdot (x_1 - p_1)^{\alpha_1} \cdots (x_d - p_d)^{\alpha_d}$$

The expression $\frac{\partial^n f}{(\partial x_1)^{\alpha_1} \cdots (\partial x_d)^{\alpha_d}}$ means that for each i = 1, ..., d we take the *i*-th partial derivative α_i -many times. Note that the order does not matter. Compute the Taylor series of

$$f: \mathbb{R}^2 \to \mathbb{R}, \ (x_1, x_2) \mapsto \frac{1}{1 - x_1 - x_2}$$

around (0,0) and find the maximal set on which it converges.

Exercise 4 (Matrix Cookbook, 2+3+2 points).

- a) Show that $\frac{\partial a^t x}{\partial x} = a$ and $\frac{\partial x^t A x}{\partial x} = (A + A^t) x$ for $a \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$.
- b) In Ridge Regression we want to find optimal weights w^* to fit the linear system $Xw^* = Y$. For that we solve the following optimization problem

$$w^* := \underset{w \in \mathbb{R}^d}{\operatorname{arg\,min}} \frac{1}{n} \|Xw - Y\|^2 + \lambda \|w\|^2$$

for a design matrix $X \in \mathbb{R}^{n \times d}$, random variable $Y \in \mathbb{R}^n$ and regularization parameter $\lambda > 0$. Use exercise 4 a) to find a closed form solution for w^* .

c) For two functions $h : \mathbb{R}^n \to \mathbb{R}^d$ and $g : \mathbb{R}^d \to \mathbb{R}^k$ the multidimensional chain rule to compute the derivative of $f = g \circ h$ is given by

$$D(g \circ h)(x) = Dg(h(x)) \cdot Dh(x).$$

Use this to compute the derivative of $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ with $f(X) = \log(\det(X))$.