Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Assignment 03 Mathematics for Machine Learning

Submission due Friday 08.11.24, 23:59 via Ilias

Justify all your claims.

Exercise 1 (Symmetric matrices, $1+1+3$ points). Prove the following statements.

- a) Any orthogonal, symmetric matrix $A \in \mathbb{R}^{n \times n}$ can only have the eigenvalues -1 or 1.
- b) Consider a symmetric matrix $A \in \mathbb{R}^{n \times n}$ and an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and let $\tilde{A} = QAQ^{T}$. Then \tilde{A} is again symmetric and has the same eigenvalues as A.
- c) For any matrix $A \in \mathbb{R}^{n \times m}$ with $A^{T}A = I_m$ the matrix AA^{T} is the orthogonal projection onto the space range (A) .

Exercise 2 (Scalar products and norms, $2+2+1$ points).

Consider a normed vector space $(V, \|\cdot\|)$. The parallelogram equality states that the norm is induced by a scalar product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ via $||v|| = \sqrt{\langle v, v \rangle}$ if and only if for all $v, w \in V$ it holds that

$$
||v + w||2 + ||v - w||2 = 2(|v||2 + ||w||2)
$$
 (1)

- a) Prove the forward implication. That is, prove that Eq. [\(1\)](#page-0-0) holds if the norm is given by a scalar product.
- b) Let $p > 0$. Prove that there is a scalar product on \mathbb{R}^2 such that the associated norm is given by

$$
||x|| = (|x_1|^p + |x_2|^p)^{1/p}
$$

for all $x \in \mathbb{R}^2$ if and only if $p = 2$.

c) Let $(V, \|\cdot\|)$ be a normed vector space, where the norm is given by a scalar product. Prove the Pythagorean theorem $||u + v||^2 = ||u||^2 + ||v||^2$ for all orthogonal $u, v \in V$.

Exercise 3 (Gram–Schmidt orthonormalization, 3+2 points).

- a) Consider the subspace $V = \text{span} (1, x, x^2, x^3) \subseteq \mathbb{R}^{\mathbb{R}}$ of polynomials with degree ≤ 3 with the scalar product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$ for $f, g \in V$. Apply Gram-Schmidt to the basis $1, x, x^2, x^3$ in order to compute an orthonormal basis of V. Hint: You do not need to show the steps of the computations of scalar products and norms, you can use a computer to compute the integrals. To check whether your solution is correct, simply verify whether your basis is orthonormal.
- b) What happens if Gram-Schmidt is applied to a list of vectors (v_1, \ldots, v_n) that is not linearly independent?

Exercise 4 (Spectral clustering, $1+1+1+2$ points).

Let $W \in \mathbb{R}^{n \times n}$ be a symmetric matrix with non-negative entries and $D \in \mathbb{R}^{n \times n}$ the diagonal matrix which contains the row sums of W, that is, $d_{i,i} = \sum_{j=1}^{n} w_{i,j}$. Define $L \coloneqq D - W$.

a) Prove that for all $x \in \mathbb{R}^n$ it holds

$$
x^{t}Lx = \frac{1}{2}\sum_{i,j=1}^{n} w_{i,j}(x_{i} - x_{j})^{2}.
$$

- b) Conclude that L is symmetric and positive semi-definite.
- c) Show that the vector of constant ones $1 =$ $\sqrt{ }$ $\overline{ }$ 1 . . . 1 \setminus $\Big\} \in \mathbb{R}^n$ is an eigenvector of L.
- d) Solve the constrained minimization problem

$$
\min_{\substack{x \in \mathbb{R}^n \\ \|x\|=1}} x^t L x
$$
 subject to $\langle x, 1 \rangle = 0$.

Note: This exercise introduces the basic principle behind spectral clustering. The matrix W is called the adjacency matrix and holds the edge weights of a graph as entries. D holds the node degrees on its diagonal and is therefore called the degree matrix and L is called the (unnormalized) graph Laplacian matrix. The minimization problem in d) is a relaxation of the min cut problem, which tries to find the minimal number of edges that you have to remove to separate a graph into two subgraphs.