Winter term 2024/25 U. von Luxburg E. Günther/ K. Frohnapfel

Assignment 01 Mathematics for Machine Learning

Submission due on Friday, 25.10.2024, 12:00 via Ilias

Justify all your claims.

Exercise 1 (Dictionary Learning, 1 + 1 + 2 + 3 points).

In this exercise, you will explore the concept of dictionary learning, where the goal is to find a set of vectors D (a "dictionary") such that data points can be represented as sparse linear combinations of these vectors. For further reading, you can look up "dictionary learning" or "compressed sensing".

1. Consider a vector $v = (2, 1, 1) \in \mathbb{R}^3$ and a dictionary D consisting of the following five vectors:

$$D = \{d_1 = (1, 0, 0), d_2 = (0, 1, 0), d_3 = (0, 0, 1), d_4 = (1, 1, 0), d_5 = (0, 1, 1)\}$$

Express v as a linear combination of

- i) exactly three dictionary vectors.
- ii) exactly four dictionary vectors.
- iii) all five dictionary vectors.
- 2. Consider a vector $v \in \mathbb{R}^3$ and a dictionary D consisting of five vectors spanning \mathbb{R}^3 . Can v be written in multiple ways as a linear combination of the dictionary vectors? If yes, provide a proof. If no, give a counterexample.
- 3. Find a dictionary in \mathbb{R}^3 with a minimal number of vectors, such that each of the following points can be expressed as a linear combination of exactly two dictionary vectors.
 - i) $v_1 = (1, 1, 1), v_2 = (2, 1, 1), v_3 = (1, 2, 2)$ ii) $v_1 = (1, 1, 1), v_2 = (2, 1, 0), v_3 = (1, 2, 0)$
- 4. Assume you have n arbitrary data points in \mathbb{R}^3 . Let D be a dictionary of vectors. Can you give upper and lower bounds on the number of dictionary vectors that are necessary such that each point can be spanned by exactly
 - i) one vector,
 - ii) two vectors,
 - iii) three vectors.

Exercise 2 (Basis and Dimension, 4 points).

Let V be a finite-dimensional vector space with basis $\mathcal{B} = (v_1, \ldots, v_n)$. Consider a vector $v = \sum_{i=1}^n \lambda_i v_i$ with $\lambda_k \neq 0$ for $1 \leq k \leq n$. Prove that $\tilde{\mathcal{B}} = (v_1, \ldots, v_{k-1}, v, v_{k+1}, \ldots, v_n)$ is also a basis of V.

Exercise 3 (Linear Mappings and Vector Spaces, 2 + 3 points).

Let V and W be two vector spaces over a field F. Consider the set of linear mappings $\mathcal{L}(V, W)$ with the operations of addition and scalar multiplication defined by

$$(S+T)(v) := Sv + Tv$$
 and $(\lambda T)(v) := \lambda(Tv)$

for $S, T \in \mathcal{L}(V, W)$ and for all $v \in V$.

- a) Verify that S + T and λT are again linear maps in $\mathcal{L}(V, W)$.
- b) Prove that $\mathcal{L}(V, W)$ with the above operations is a vector space.

Exercise 4 (Linear Mappings, 2 + 2 points).

Suppose v_1, \ldots, v_n is a list of vectors in some vector space V. Define $T \in \mathcal{L}(\mathbb{R}^n, V)$ by $T(\lambda_1, \ldots, \lambda_n) = \lambda_1 v_y + \cdots + \lambda_n v_n$.

- a) Which property does T need to have such that v_1, \ldots, v_n span V?
- b) What property does T need to have such that v_1, \ldots, v_n are linearly independent?