Probability measure

Mat is countably additive : 14 (Ai)ien is a sequence of pairwin disjoint pets, Keen

$$\mu\left(\bigcup_{i=\Lambda}^{\infty}A_{i}\right) = \sum_{i=\Lambda}^{\infty}\mu(A_{i}).$$

A measure
$$P$$
 on a measurable space $(-\mathcal{L}_{c}, \mathcal{A})$ is called
a probability measure if $P(-\mathcal{L}) = \Lambda$.
The elements in \mathcal{A} are called events.
Then $(\mathcal{R}, \mathcal{A}, P)$ is called a probability space.

$$\frac{\text{Three two dice}:}{SZ = \{A_1, 2, \dots, 6\} \times \{A_1, 2, \dots, 6\}} = \{(A_1, A), (A_1, 2), (A_1, 3), \dots\}$$

$$\mathcal{H} = \mathcal{B}(\mathcal{R})$$

$$P(\{(i_1, j)\}) = \frac{\Lambda}{36}$$

Example (2) Normal dirtribution

$$SZ = R$$

$$d = \text{Forest-6-algebra}$$

$$f_{\mu_1\sigma} : R = R$$

$$k \mapsto \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$f: dt = [z_0, n]$$

$$P(A) := \int f_{\mu_1\sigma}(x) dx$$

Different types at probability measures

Discrete measure:

$$\mathcal{L} = \{ x_{1}, x_{2}, \dots, \} \text{ finite or at most countable.} \\ \mathcal{U} = \mathcal{G}(\mathcal{I}) \\ \text{We define a probability measure } P: \mathcal{U} \rightarrow [\mathcal{O}_{1}\Lambda] \text{ by} \\ \text{arriguing probabilities to the "elementary events":} \\ P(\{x_{i}\}) = :Pi \\ \text{with } O \leq pi \leq \Lambda_{1} \quad Z \quad pi = \Lambda. \\ \text{For } A \in \mathcal{A} \quad \text{we arrign} \\ P(A) = \sum_{\{i \mid x_{i} \in A\}} Pi \\ \text{Examples: for } A \quad coin; \quad distribution on R \end{cases}$$

$$\frac{Dirac}{R} = \frac{1}{2} \frac{Dirac}{R} = \frac{1}{2$$

A direct measure on R can be written as a sum of Dirac measure. For example, throwing a die can be described as $\frac{1}{6}\left(\delta_{\Lambda} + \delta_{2} + \dots + \delta_{6}\right)$

Moasurs with a density
Consider
$$(\mathbb{R}^{n}, \mathcal{O}(\mathbb{R}^{n}))$$
 and the lebesgue measure Λ .
Consider a function $f:\mathbb{R}^{n} \to \mathbb{R}_{\geq 0}$ that is measurable
and sufficient $\int f d\Lambda = \Lambda$. (= $\int f c m dx$)
Then are define a measure V on \mathbb{R}^{n}
by relying, for all $\Lambda \in \mathcal{A}$,
 $V(\Lambda) := \int f(x) dX$.
 Y is the probability measure on $(\mathbb{R}^{n}, \mathcal{O}(\mathbb{R}^{n}))$ with density f .
Notation: $Y = f \cdot \Lambda$

$$\frac{Def}{(A \ prob.\ means} \ \gamma \ on \ \left(R^{m}, \mathcal{D}(R^{n}) \right) \quad \text{ir called}$$

$$\frac{dbrolubly continuous}{(a \ prob} \ with report to another means p on (R^{n}, \mathcal{D}(R^{n})))$$

$$if \quad every \ p-null ret \quad \text{ir also a } \neg -null nA:$$

$$\forall \ B \in \mathcal{B}(R^{n}): \ p \ (B) = 0 \implies \neg \ (B) = 0.$$
Notation: $\gamma \ll p$

$$\mu(A) = 0 \implies \int f \ dp = 0$$

$$A \quad \gamma(A)$$
Example: $\nu(0, A) \ll A$

Example:
$$\delta_0 \not\asymp \lambda$$
 because
 $\lambda(\xi \circ \xi) = 0$ but $\delta_0(\xi \circ \xi) = \lambda$.

Def
$$p_1 + meanwood (-Q_1, d^2)$$
. $+ ir called pingular
unt p if there airbor $A \in d$ such that
 $p(A) = 0$ but $\neg (A^C) = 0$. Dohabiou: $p \perp v$.
 $-\frac{1}{100000}$ R
 $p = \delta_0$
Example: $A \perp \delta_0$
Theorem (Decomposition by Lebesgue)
 $p_1 \vee probe meanors on (-Q_1, d)$. Here there airbor a unique
 $obe composition = v_A + v_2$ rade that
 $\neg_A \ll p$ and $\neg_2 \perp p$.
Example: $\neg \times \frac{1}{2}(b(0, A) + \delta_0)$
 $\neg = v_A + v_2$ other $\neg_A = \frac{1}{2} b(0, A)$, $\neg_2 = \frac{1}{2} \delta_0$.
Proof. Let M_p be the set of all multiple with p_1 c ct .
 $\alpha := sup \{ \neg (A) \mid A \in M_p \}$$

such that
$$v(A_n) \nearrow \alpha$$
. By countable additionity
we get $v(\bigcup A_n) = \alpha$.
 $=: N$
Define $v_n : A \mapsto v(A \cap N^c)$
 $v_2 : A \mapsto v(A \cap N)$

Pon the job.

Cumulative distribution function Let P is a prob-measure on (R, B(R)). Define the function F: R -> R, x -> P(J-0, rJ). We say that F is a cumulative distribution function (cdf), that is it satisfies the following poet properties: (i) F is monobuically increasing, $\lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to +\infty} f(x) = \lambda.$ F is continuous from the right: (ii) (Ku), pequence with the D x (i.e. Xn = Xn+1 and Kn-> x) then also F(xu) -> F(x). F

150

Let $F: \mathbb{R} \to \mathbb{R}$ be a function with properties (i) and (ii). Then thus wist a unique prob. measure P on $(\mathbb{R}, \mathbb{B}(\mathbb{R}))$ such that P(J-w, xJ) := F(x).

Random variable

Def Let
$$(\mathcal{L}, \mathcal{K}, P)$$
 be a probability space, $(\tilde{\mathcal{K}}, \tilde{\mathcal{K}})$ be
another measurable space. A mapping: $X: \mathcal{L} \to \tilde{\mathcal{L}}$
is called a random variable if X is measurable, i.e.
 $\forall \tilde{\mathcal{X}} \in \tilde{\mathcal{K}} : X^{-1}(\tilde{\mathcal{X}}) := \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{X}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$
 $\mathcal{L} = \{ \omega \in \mathcal{L} \mid X(\omega) \in \tilde{\mathcal{A}} \} \in \mathcal{I}.$

Example: sum of the two dive

$$\begin{aligned}
\Omega &= \left\{ \begin{array}{c} (i,j) \mid i,j \in [n, \dots 6] \right\} & \quad \text{if } = [2, \dots, 12] \\
\text{if } &= \mathcal{P}(\mathcal{R}) \\
\text{if } &= \mathcal{P}(\mathcal{R}) \\
& \mathcal{P}\left(\left\{ Ci,j \right\} \right\} \right) = \frac{\Lambda}{36} \\
& X & \quad \text{sum of the two values} \\
& X: \mathcal{R} \rightarrow \{2, \dots, \Lambda^2\} \\
& \text{ [s meanvable.]}
\end{aligned}$$

Def A random variable
$$X : \Sigma \rightarrow \tilde{\Sigma}$$
 induces a measur
on the harpet space:
For $\tilde{A} \in \tilde{\mathcal{X}}$ we define
 $\frac{P_X(\tilde{A})}{X} := P(X^{-1}(\tilde{A}))$
This is a probability measure on $(\tilde{\Sigma}, \tilde{\mathcal{X}})$ and it is
ralled the distribution of X .

Conditional probabilities
Notation
$$P(A \cap B) = P(A \text{ and } B'')$$

 $P(A \cup B) = P(A \text{ or } B'')$
 $P(A \cup B) = P(A \text{ or } B'')$
 $P(A \cup B) = P(A \text{ or } B'')$
 $P(A \cup B) = P(A \text{ or } B'')$
 $P(A \cup B) = P(B) > 0$. Hen
 $P(A \mid B) := \frac{P(A \cap B)}{P(B)}$ is called the
conditional probability of A given B.
Measure The unspires $P_B : A \to EqA$, $A \mapsto P(A|B)$ is a
probability measure on (sz, A) , it is called the conditional
 $d_1 + b \oplus B$.

P (vaccinated | direase)

Bayes formula

Law of Lohal probability: Let Ba, Bz, ..., Bu be a divisionit partition of S2 with Bi E of pradic, and AEN. Then

$$p(A) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i) = \sum_{i=1}^{n} P(A \cap B_i)$$

$$\frac{Bayes \text{ formula}}{P(Bi|A)} = \frac{P(A | Bi) \cdot P(Bi)}{Z P(A | Bi) \cdot P(Bi)} = \frac{P(A | Bi)}{P(A)}$$

Example : breast caucer screening Assume 1% of all women above 40 have breast caucer. 90% of women will breast cancer be will be koht position. ("true positions") 8% of women willout breast cancer will receive a positie routh as well ("false posities") Give that a wow ar notes receives a positier bot result, what is the likelihood that due has breast cancer?

$$= \frac{0.5 \cdot 0.01}{0.3 \cdot 0.01 + 0.09 \cdot 0.99} \approx 10 \%$$

In de peudur ce

Observation: A is independent of I <=> P(A|B) = P(A)

A family of eventy
$$(Ai)_{i \in I}$$
 is raked independent
if for all finite suberts $J \subset I$ are have
 $P((\bigcap Ai) = \Pi P(Ai))$.
 $i \in J$ $i \in J$
 $(Founily is called pairwise independent if $\forall i, j \in I$:
 $P(Ai \cap Aj) = P(Ai) \cdot P(Aj)$. This does not
 $i w p \mid y$ independence !)$

Two random variables
$$X: \mathcal{Q} \rightarrow \mathcal{Q}_{1}, Y: \mathcal{Q} \rightarrow \mathcal{Q}_{2}$$

are called independent if their induced 6-algebras $\theta(X), \overline{\theta}(U)$
are independent:
 $\forall A \in \overline{\theta}(X), B \in \overline{\theta}(U): P(A \cap B) = P(A) \cdot P(B).$

Notation for independence:

Expectation (discrete care)

Considu a discrete random variable X: SL -> R (Matis, X(SL) is at most compable).

• Torra coin.
$$SZ = \{ head, tai'| \}_{1}$$
 $X = B(\Omega)$, $P(head) = p$
 $P(fai') = 1 - p$.
 $X : SZ \rightarrow \{ \delta, \Lambda \}$, head $E \rightarrow \Lambda_{1}$ fai'l $E \rightarrow 0$.
 $E(X) = 0 \cdot P(X=0) + 1 \cdot P(X=\Lambda) = p$.
 $\Lambda - p$

• Linear:
$$E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$$

• Linear: $E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$.

• X, Y independent => $E(X \cdot Y) = E(X) \cdot E(Y)$

$$Z_{i} \left[x_{i} \gamma_{j} \right] \left[P\left(\chi = x_{i} \left(Y = \gamma_{j} \right) \right] = 0$$

$$= \sum_{ij} \left[x_{i} \gamma_{j} \right] \left[P\left(\chi = x_{i} \right) \cdot P\left(Y = \gamma_{j} \right) \right]$$

$$= \left(\sum_{i} \left[x_{i} \left[P\left(\chi = x_{i} \right) \right] \right) \left(\sum_{j} \left[\gamma_{j} \left[P\left(Y = \gamma_{j} \right) \right] \right) \right]$$

$$= \left(\sum_{i} \left[x_{i} \left[P\left(\chi = x_{i} \right) \right] \right) \left(\sum_{j} \left[\gamma_{j} \left[P\left(Y = \gamma_{j} \right) \right] \right) \right]$$

Variance, covariance, correlation
(direct care)

$$(direct care)$$

 $(direct care)$
 $(direct care)$
 $(direct care)$
 $(direct care)$
 $(direct care)$
 $(x_1^2) = 0$, $E(4^2) = 0$.
Then $Var(X) := E((X - E(X))^2)$
is called the variance of X
and $\sqrt[4]{Var(X)} =: \overline{\sigma}_X$
is called the variance of X
 $duointien$.
 $(direct care of X)$
 $(direct care)$
 $(dir$

$$C_{ov} (X, Y) = E ((X - E(X)) \cdot (Y - E(Y)))$$

$$\begin{cases} y \\ body \\ uaight \\ \vdots \\ y \\ y \\ uaight \\ \vdots \\ y \\ x = 0.9 \end{cases}$$

X = that size

Cov & O (uncorrelated).

Xig independent =1 Var (X+G) = Var(X) + Var(Y).

Expectation and variance in the general octing

$$L^{k}(\Omega, \mathcal{A}, P) := \{X: \Omega \rightarrow R \mid X \text{ meanweakle and}$$

 $\int |X^{k}| dP < \infty \}$
 Ω

(S, U, P) prob. space, $X: SZ \rightarrow R$ with distribution $P_X = X(P)$, $X \in L^{\Lambda}(SZ, J, P)$. The expectation of X is know defined as

$$E(X) := \int X dP = \int x dP_{X}(x)$$

$$= \int R \qquad (can of denaity f;)$$

$$\int x f(x) dX)$$

$$R$$

If
$$X^{k} \in L^{n}(\mathcal{L}, \mathcal{A}, P)$$
 then
 $E(X^{k}) = \int X^{k} dP$ is called the k-the moment of X.
If $X \in L^{2}(\mathcal{L}, \mathcal{A}, P)$ we define

$$V_{or}(X) = E((X - E(X))^2)$$

 $C_{ov}(X,Y) = E((X - E(X)) \cdot (Y - E(Y)))$

Marhov and arebysher inequalities

$$\frac{Caudy - Schwartz - inequality}{X, Y \in L^2(\mathcal{Q}, \mathcal{H}, P)}.$$
 Then:
$$E(X \cdot Y)^2 \leq E(X^2) \cdot E(Y^2)$$

Murhov inequality:
$$E > 0$$
, $f: Eo, \infty E \rightarrow Eo, \infty E_{1}$
 f monotonically increasing. Then
 $P(1Y1 > E) \leq \frac{E(f(1Y1))}{f(E)}$

$$lu porticular, P(141 > E) \leq \frac{E(141)}{E}$$

Chebyshev inequality:
$$\mathcal{E} > 0$$
, $X \in L^{2}(\mathcal{A}, \mathcal{U}, \mathcal{P})$. Then:
 $\mathcal{P}(|X - \mathcal{E}(X)| > \mathcal{E}) \leq \frac{Var(X)}{\mathcal{E}^{2}}$
Hey quantity in leaving theory

Examples of probability distributions

Discrete distributions

· Luipron dirtr. on
$$\{\Lambda_1, \dots, n\}$$
: $P(\{i\}) = \Lambda$

Binomial distribution on
$$\int 0, ..., n^{2}$$

Toss e coin a times, independently, each time with
probability p of observing head. Deal Deals head = 1, tail 0,
 $X := #$ head
 $P(X=k) := {\binom{n}{k}} \frac{k}{r} (1-p)^{n-k}$

.

• Poisron distribution on N
Parameter
$$\lambda > 0$$

 $P(X=k) = \frac{1^{k}e^{-1}}{k!}$

lutuition: number of incoming calls at a hothing.

0h.

+

6

Normal distribution ou R

Notation:
$$\mathcal{V}(\mu, \sigma^2)$$

Some first projutes: $X \sim N(\mu_1 \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, X, Y inde pendent. Then $X + Y \sim N(\mu_1 \sigma_1^2, \sigma_1^2 + \sigma_2^2)$

Normal distribution in high dimention

$$X: SC \rightarrow R^{n}$$
, $X = \begin{pmatrix} x_{n} \\ \vdots \\ x_{n} \end{pmatrix}$, $\mu \in E(X_{c})$, $\mu = \begin{pmatrix} \mu_{n} \\ \vdots \\ \mu_{n} \end{pmatrix}$

ZER with Z= Cov(Ki, Xj), called covariance matrix.

$$f_{\mu_{1}Z}(x) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}(x-\mu)^{t}Z^{-n}(x-\mu)\right)$$

Notation: N(N,Z)

•
$$X \sim N(p_1 \Sigma_n), Y \sim N(p_2, \Sigma_2), independent, then
 $X + Y \sim N(p_n + p_2, \Sigma_n + \Sigma_n)$$$

Consider $\Pi_1 \Pi_2 \dots, \Pi_k$ with $0 \leq \Pi_i \leq \Lambda$ and $\sum \Pi_i = \Lambda$ Consider the following durity:

$$f(x) = \sum_{i=1}^{k} \pi_i \cdot f_{\mu_i, z_i} (x)$$

Courregne est randon variables

(1)
$$(X_i)_{i \in \mathbb{N}}$$
 couvers to $X_{almost surely} : \langle - \rangle$
 $P(\{w \in \mathbb{R} \mid \lim_{i \to \infty} X_i(w) = X(w)\}) = \Lambda$
 $i \to \infty$

Notation:
$$X_i \rightarrow X$$
 a.s.

(k)
$$(X_i)_{i \in \mathbb{N}}$$
 courses to X_i in probability : $\langle \Rightarrow \rangle$
 $\forall E > O P(\{w \in \mathcal{I} \mid |X_i(w) - X_i(w) \mid > E\}) \longrightarrow O$

Let us diech that there definitions make sense. We need to poor that the events in (1) and (2) are in fact in the ct, <u>(ase (1)</u>: <u>lim X; (w) = X (w)</u> (=) thEN JNEN tu>N: [X₆ cw) - X cw)] < <u>1</u> by <u>k</u> So weight:

$$\left\{ \begin{array}{l} \omega \mid X_{i}(\omega) \rightarrow X(\omega) \end{array} \right\} = \\ = \left(\begin{array}{l} 0 \quad \bigcup \quad \bigcap \quad \int \omega \mid [X_{u}(\omega) - X(\omega)] < \begin{array}{l} \Lambda \\ \kappa \end{array} \right\} \quad \text{for } \\ k \in \mathbb{N} \quad \text{Ne } \mathbb{N} \quad n \geq \mathbb{N} \end{array} \right| \left[X_{u}(\omega) - X(\omega) \mid < \begin{array}{l} \Lambda \\ \kappa \end{array} \right] \quad \text{for } \\ \text{countrable unions} \quad X_{u}, X \text{ are measurable } = \end{array}$$

a chieve
$$|X_u - x|$$
 is measurable
 $x_u - x|$ is measurable
 $x_u - x = 0$

(3)
$$X_n \rightarrow X_{in} L^p$$
 ("in the p-th mean") : (=>
 $X_n, X \in L^p$ and $\|X_i - X\|_p \rightarrow 0$.

(4) Let
$$H^{\Lambda}(\mathbb{R}^{n})$$
 be the set of all probability measure on
 $(\mathbb{R}^{n}, \mathcal{B}(\mathbb{R}^{n}))$. Assume $(p_{M})_{n} \subset H^{\Lambda}(\mathbb{R}^{n}), p \in H^{*}(\mathbb{R}^{n}).$
 $C_{b}(\mathbb{R}^{n}) := \text{space of bounded continuous functions.}$
 $p_{n} \longrightarrow p \quad \text{weakly} \quad : \leq >$
 $\forall f \in C_{b}(\mathbb{R}^{n}) : \int f dp_{n} \longrightarrow \int f dp$
 $p_{n} \qquad p_{n}$

the me

$$\begin{aligned} & \int G_{X} \cos sidn: \\ & \text{In functional analysis, a require $(K_{C})_{M} \text{ in a} \\ & \text{Banach space B consums weakly if for all \\ & \text{Iounded lin. functionals } f, we have that \\ & f(K_{U}) \rightarrow f(X). \quad (i.e., for all f \in B'). \end{aligned} \\ & \text{Space } H^{A}(\mathbb{R}^{n}) \text{ itsalf is not a Banach space, \\ & \text{but } C \in H(\mathbb{R}^{n}), \text{ space of all bounded measure.} \\ & \text{The dual space of } M(\mathbb{R}^{n}) \text{ is } (G(\mathbb{R}^{n})). \end{aligned}$$$

(5)
$$X_{i1}X : (I, d, P) \rightarrow R^{u}$$
. The sequence X_{i1}
countrys in distribution to $X : \langle = \rangle$
the distribution P country to P weakly.

We have the following in plice Hours. (but none of the missing
implications is true in general):
almost overly in
$$L^1 \ll in L^p$$

 $(p > \lambda)$
in probability
 U
in distribution

$$\begin{array}{l} \underline{\mathsf{Example}} & (\mathsf{Couv. in distribution, but ust in prob.}) \\ \cdot & \mathsf{Xu} : \mathsf{Eo}_1 \; \mathsf{AJ} \to \mathsf{R} \; , \; \mathsf{Xn} = \mathsf{X_2} = \ldots = \; \mathsf{AL}_{\mathsf{EO}_1 \overset{A}{=} \mathsf{E}} \; \left[\begin{array}{c} \mathsf{L} \\ \cdot \\ \mathsf{X} \\ \cdot \\ \mathsf{X} \\ \mathsf{X$$

Theorem of Borch - Cantelli

(s, t, P) prob. space, (An) sequence of events in th. P(An infinitely offer) := P(An i.o.) = P(Swell we An printivitely many u3)

 $\frac{P_{roporibion}: X_{u_1}X \quad v.v. \quad ou \quad (\Pi_{i} \Lambda_{i} P).}{X_{u} \rightarrow X \quad a.s.} \quad (=)$ $\frac{X_{u} \rightarrow X \quad a.s.}{\forall E = 0}: P\left(\int |X_{u} - X| \geq E \right) \quad inf. \quad offun = 0$

Proof intuition: $\begin{cases} \lim x_{n} = X \end{cases}$ $= \begin{cases} \lim x_{n} = X \end{cases}$ $= \begin{cases} \lim x_{n} = X \rceil > \frac{1}{k} \quad \text{at wort finily of } M \end{cases}$ $= \bigcap_{k \in \mathbb{N}} \left[|x_{n} - X| > \frac{1}{k} \quad \text{at wort fin. of } M \right]$ $(\bigcup_{k \in \mathbb{N}} \left\{ |x_{n} - X| > \frac{1}{k} \quad \inf. of fm \right\}$ $(\bigcup_{k \in \mathbb{N}} \left\{ |x_{n} - X| > \frac{1}{k} \quad \inf. of fm \right\}$

Theorem: Cousids a sequence of earth
$$(t_u)_u \subset Ut$$
.
(1) If $\tilde{Z} P(A_u) \ge \infty$, then $P(A_u i. 0.) = 0$.
 $u=1$

(2) If
$$\sum_{n=1}^{\infty} P(A_n) = \infty$$
, and if $(A_n)_n$ are independent,
Here $P(A_n \ i.o.) = \Lambda$.

Application in leaving theory:
Assume that
$$P(|X_u - X| > \frac{1}{n}) < \sigma_n$$
, and
assume that $\sum_{u=1}^{\infty} f_u < \infty$. Then you can use
Borch - Cautilli' to prove that
 $P(|X_u - X| > \frac{1}{n} \quad i. o.) = O$,

Mus Xn -> X a.s.

Limit theorems: LLN and CLT

Strong law of large mumber

$$X_{in}: (I_{i}, u_{i}, r) \rightarrow \mathbb{R}$$
 iid (identically distributed and
independent). Assume the mean $p:=E(X_{in}) < \infty$,
and $V_{0r}(X_{in}) =: 6^{2} < \infty$. Then:
 $\lim_{n \to \infty} \frac{\Lambda}{n} \sum_{i=1}^{n} X_{ii} = \mu \quad a.s. and in L^{2}.$

Central limit Knortun
(Xilien iid rv with mean
$$p_1$$
 variance $6^2 < \infty$.
Cauridar the rv $S_n := \sum_{i=1}^n X_i$. We normalize it to
 $Y_n := \frac{S_n - n \cdot p}{(n \cdot \sigma)}$ (which has mean 0 and
 $y_{tan} := \frac{S_n - n \cdot p}{(n \cdot \sigma)}$ (which has mean 0 and
 $y_{tan} dev. 1$).

Concentration inequalities

Hohivation: raudom projections

$$\frac{1}{12} R^{d}, d \log_{2} R^{d}, l "rwell"$$

$$\frac{1}{12} Waut to project in R^{d}, l "rwell"$$

$$\frac{1}{12} V = \frac{1}{12} V = \frac{1}$$

Horfding inequality
:
$$(a_{1}d_{1}P) \rightarrow (R, B)$$

: $(a_{1}d_{1}P) \rightarrow (R, B)$
: $(a_{1}d_{1}P) \rightarrow (B, B)$
: $(a_{1$

Application of Hoeffding: SLLN
Prop (Ki)ien iid rv, a
$$\leq X_i \leq b$$
, let K have the same
distribution as the X_i .
Then: $\frac{1}{n}\sum_{i=1}^{n} X_i \rightarrow E(X)$ a.s.

Proof. Hoeffding =>

$$P\left(\frac{\Lambda}{n} \sum x_{i} - E(x) > t\right) \leq exp\left(-\frac{2nt^{2}}{(b-a)^{2}}\right)$$

$$P\left(\frac{\Lambda}{n} \sum x_{i} - E(x) < -t\right)$$

$$= P\left(\frac{\Lambda}{n}\Sigma(-x_i) - E(-x) \forall t\right) \leq exp\left(-\frac{2ut^2}{(b-a)^2}\right)$$

Combined we get

$$P\left(\left|\begin{array}{c}A\\ n\end{array}\sum x_{i}^{2}-E(x)\right|>E\right)\leq 2\exp\left(-\frac{2nt^{2}}{(6-a)^{2}}\right).$$

How want to apply Porch- (autili to pet a.s. country ce: $Z_n := \frac{1}{n} \sum_{i=1}^{n} X_i$

$$\sum_{n=0}^{\infty} P(z_n - E(x) > t) \leq 2 \cdot \sum_{n=0}^{\infty} exp(-\frac{2ut^2}{(6-\alpha)^2}) \leq \infty$$

Subthink:
$$r := exp(-\frac{2b^2}{(b-a)^2}) \in [0, 1[$$

Observe: $exp(-\frac{2nt^2}{(b-a)^2}) = r^{12}$

$$sum = 2 \sum_{n=0}^{\infty} r^n = 2 \cdot \frac{1}{n-r} < \infty.$$

Now Borl - Countili pins almost rue couroquee, the

$$\frac{\text{Mearcun (Fourshin)}: X_{1}, ..., X_{n} \text{ is dependent with 0 means,}}{|X_{i}| < \Lambda \text{ a.n. Let } 6^{2} := \frac{\Lambda}{n} \sum_{i=1}^{n} V_{as}(X_{i}). \text{ Then}}$$
for all $t > 0$,
$$P(\frac{\Lambda}{n} \sum_{i=1}^{n} x_{i} > t) \leq eq(-\frac{nt^{2}}{2(e^{2} + e^{2})})$$

Example: f (Kn,..., Kn)=
$$\sum_{i=1}^{n} x_i^i$$
, and a $\leq x_i^i \leq b$ $\forall i$, then
f satisfies \textcircled{B} with $c_i^i = b - a$.

Glivenho - Cantelli Theorem

Now fix are possible as $a_0 \in \mathbb{R}$. Fu (ao) \longrightarrow F(ao) by the law of lass numbers. Uncourse $M_{\{x_i \leq a_i\}}$ is a Binomial received $p = P((x_i \leq a_i))$.

So it it clear that Fu -> F pointwise (i.e. that) How let's look at uniform courrymice.

front

Problem: used to book at

$$P(\underset{a \in R}{\operatorname{rup}} | f_{u}(a) - f(a) | > E)$$

$$e \in R$$
difficent becaux R is uncountable
If we take a supremum out a frink set,
it is easier:

$$P(\underset{a \neq n}{\operatorname{rup}} \operatorname{tal} u(1 \neq E)) =$$

$$= \frac{P(|U_{1}| > E \text{ or } |U_{2}| > E \text{ or } \dots \text{ or } |U_{n}| > E)}{E = \frac{P}{E} P(|U_{1}| > E)}$$
Trick of the proof: count sup to something "finith".
How could we achieve his?
How could we achieve his?

$$f_{u} = \frac{P(|U_{1}| > E)}{E = \frac{P}{E} P(|U_{1}| > E)}$$

$$= \frac{P(|U_{1}| > E)}{E = \frac{P}{E} P(|U_{1}| > E)}$$

$$= \frac{P(|U_{1}| > E)}{E = \frac{P}{E} P(|U_{1}| > E)}$$

$$= \frac{P(|U_{1}| > E)}{E = \frac{P}{E} P(|U_{1}| > E)}$$

$$= \frac{P(|U_{1}| > E)}{E = \frac{P}{E} P(|U_{1}| > E)}$$

| red_green| [red_blue] = 2 | green-blue |

$$P\left(\sup_{a} | \frac{F_{u}(a) - F_{v}(a)}{a} | z \in \right)$$

$$\frac{2}{2} P\left(\sup_{a} | \frac{F_{u}(a)}{a} - \frac{F_{u}'(a)}{a} | z \in \right)$$

$$\frac{5kp^2}{1}: Wout to glit this is two tour | Fu (al - Fu' (a) | = | $\frac{1}{n} \sum_{i=n}^{n} \left(\frac{1}{1} \frac{x_i + a^2}{x_i + a^2} - \frac{1}{1} \frac{x_i^2}{x_i^2} - \frac{1}{1} \frac{x_i^2}{x$$$

Introduce Rademadres random variables $6_{1,...,6_{N}}$: $6_i(\{-n\}) = 0_i(\{n\}) = 1/2$.

Dettribution of @ is the same as the distr. of the following:

$$\left| \begin{array}{c} \Lambda \stackrel{\text{``}}{\geq} & 6_i \left(\mathcal{M}_{\{X_i \leq a\}} - \mathcal{M}_{\{X_i \leq a\}} \right) \right| = \langle P \rangle$$

Dow we have:

$$2 P\left(\sup_{a} | t_{u}a) - t_{u}'(a) | \ge \frac{\epsilon}{2}\right)$$

$$= 2P\left(\sup_{a} | \frac{A}{n} \ge 6; (A_{x_{i} \le a} - A_{x_{i}' \le a}) | \ge \frac{\epsilon}{2}\right)$$

$$\leq 2P\left(\sup_{a} | \frac{A}{n} \ge 6; A_{z_{i} \le a} | \ge \frac{\epsilon}{4}\right) + 2P\left(\sup_{a} | \frac{A}{n} \ge 6; A_{z_{i} \le a} | \ge \frac{\epsilon}{4}\right)$$

$$= U\left(\sup_{a} | \frac{A}{n} \ge 6; A_{z_{i} \le a} | \ge \frac{\epsilon}{4}\right) + 2P\left(\sup_{a} | \frac{A}{n} \ge 6; A_{z_{i} \le a} | \ge \frac{\epsilon}{4}\right)$$

$$= U\left(-P\left(\max_{a} | \frac{A}{n} \ge 6; A_{z_{i} \le a} | \ge \frac{\epsilon}{4}\right)$$

$$\frac{Sup}{right nik} ir ucornwy pr left nik$$

$$= U\left(-P\left(\max_{a} | \frac{A}{n} \ge 6; A_{z_{i} \le a} | \ge \frac{\epsilon}{4}\right)$$

$$\frac{Sup}{w_{i} t_{i} t_$$

Strp 4 Hoefding to (th)
Ha:

$$P\left(\frac{\Lambda}{n} | \Sigma \sigma; \Lambda L_{X_i \in a} | \Sigma \langle X_1, ..., X_n \rangle\right)$$

 $\leq 2 \exp\left(-\frac{n \varepsilon^2}{32}\right)$

Combining enzything pins the Kresten.

Product space, joint distributions

Courridus two measurable spaces
$$(\Omega_{11}, d_{1}), (\Omega_{21}, d_{2})$$
.
Define the product space $(\Omega_{1} \times \Omega_{2}, d_{1} \otimes d_{2})$ with
 $\Omega_{1} \times \Omega_{2} = \{(\omega_{1}, \omega_{2}) \mid \omega_{1} \in \Omega_{1}, \omega_{2} \in \Omega_{2}\}$
 $d_{n} \otimes d_{2} = \{A_{n} \times A_{2} \mid A_{1} \in A_{n}, A_{2} \in d_{2}\}$.
Courridus two rvs $X_{1}: (\Omega_{1}, d_{1}, P) \rightarrow (\Omega_{1}, d_{n})$
 $X_{2}: (\Omega_{1}, d_{1}, P) \rightarrow (\Omega_{2}, A_{2}).$
 $X := (X_{n}, X_{2}), (\Omega_{1}, d_{1}, P) \rightarrow (\Omega_{n} \times \Omega_{2}, d_{2}).$
 $Y_{1} = (d_{1} + h_{1}) (\omega) = (X_{1}(\omega_{1}, X_{2}(\omega)).$
 $Y_{1} = dirthi buttion P_{(X_{1}, X_{2})} ou (\Omega_{1} \times \Omega_{2}, d_{1} \otimes d_{2})$ is called
the joint dirthibution of X_{n} and X_{2} .
 $Gxaugle in HL: (X, Y)$ where X is the input data, Y is
the label

$$\left(\begin{array}{cc} \rho_{\Lambda} \otimes \rho_{z} \end{array} \right) \left(\begin{array}{cc} A_{1} \times A_{z} \end{array} \right) := \left(\begin{array}{cc} \rho_{\Lambda} \otimes A_{1} \end{array} \right) \cdot \left(\begin{array}{cc} \rho_{z} \otimes A_{z} \end{array} \right).$$

Theorem Two vvs X1X2 are independent if and only if their joint distribution coincides with the product distribution: $P_{(X_1, X_2)} = P_1 \otimes P_2 .$

Marginal distribution

Consider the joint distribution \mathcal{P} of two vers $X := (X_{n_1} X_2)$. The marginal distribution of X wet X_1 is the original distribution of X_1 on (M_{n_1}, M_2) , namely \mathcal{P}_{X_1} . Similarly for \mathcal{P}_{X_2} .

maginal wrtx

Marginal distributions in case of densities $X_14: (IZ, IA, P) \rightarrow (R, B(R)), Z:=(X, 4).$ Assume that the joint distribution of Z has a density of on IR^2 then the following statements hold:

(1) Both X and Y have durinity on
$$(R, d(R))$$
 given by

$$f_{X}(x) = \int_{-\infty}^{\infty} f(x, y) dy^{n + 1} dx$$

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx$$
(2) X and Y are independent iff

$$f(x, y) = f_{X}(x) \cdot f_{Y}(y) \quad a.s.$$

For example, couride X a coutinuous vv with density and 4 a discrete vv. Sec. K= income ER

Special cakes marginals of multivorial normal distributions
2 dim Consider a 2-dim normal row
$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
 with means
 $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} G R^2$ and cov. $\Sigma = \begin{pmatrix} G_1^2 & G_{12} \\ G_{2n} & G_2^2 \end{pmatrix}$.
Then the marginal distribution of X with X_1 is again

$$\frac{h-dim}{X} = \begin{pmatrix} x_{4} \\ \vdots \\ x_{n} \end{pmatrix} \in \mathbb{R}^{h} . \quad Group he variables: \quad \begin{cases} x_{5} \\ \vdots \\ x_{k} \end{cases} \stackrel{X}{\longrightarrow} G \mathbb{R}^{h-k} \\ \vdots \\ x_{n} \end{cases}$$

Wout to bolicat the marphinal of
$$X$$
 wit \tilde{X} ,
 $p = \begin{pmatrix} \mu_{A} \\ \vdots \\ \mu_{H} \end{pmatrix}$ mean, $\tilde{p} := \begin{pmatrix} \mu_{A} \\ \vdots \\ \mu_{H} \end{pmatrix}$, $p^{H} = \begin{pmatrix} \mu_{H+A} \\ \vdots \\ \mu_{H} \end{pmatrix}$
 $\tilde{z} = \begin{pmatrix} \frac{\Sigma_{A}}{1} & \frac{\Sigma_{AZ}}{1} \\ \frac{\Sigma_{A}}{2} & \frac{\Sigma_{AZ}}{2} \end{pmatrix}$ is the second seco

Now the marphon of X with X is a normal distr. on Rk with mean ji and cov. Znn. Conditional distributions

Direct
$$(\alpha \mu)$$
:
Know coudibleual probabilities : $P(A \mid B)$
defined for events $A, B \in A, \text{ and } P(B) > 0.$
Let $X, Y : (Sl, A, P) \rightarrow R$ be direct W , $Y \in R$ such that
 $P(Y = \gamma) > 0.$ Then we can define the conditional probability
measure P : $A \longmapsto P(X \in A \mid Y = \gamma).$
 $X \mid Y = \gamma$
This is a probability measure.

Couditional distributions in case of dussifies
Assume
$$Z: = (X, Y)$$
 has a joint duskity $f: \mathbb{R}^2 \to \mathbb{R}$,
and maspinel densities $f_X , f_Y: \mathbb{R} \to \mathbb{R}$. Then the function
 $f_X|_{Y=Y} (x) := \frac{f(x, Y)}{f_Y(Y)}$
is then also a density on \mathbb{R} , called the conditional density of
 $X = \frac{X - Y}{f_Y(Y)}$

$$\frac{E \times comple : normal division divisi$$

Conditional expectation

$$\frac{Def}{direct (direct (ak))} = X_{1}Y_{1}(\Omega_{1}Y_{1}) \rightarrow R$$

assume X takes finihly (countrolly) many values
$$x_{1,...,x_{n} \in R_{1}} = Y_{1} (countrolly) many values
$$x_{1,...,x_{n} \in R_{1}} = \frac{1}{2} (Y_{1} + Y_{1}) = \sum_{j=1}^{m} (Y_{j} + Y_{j}) = \frac{1}{2} (Y_{j} + Y_{j}) = \sum_{j=1}^{m} (Y_{j} + Y_{j})$$$$

$$\frac{Example}{E(sum | X = A)} = \sum_{i=A}^{A2} i \cdot P(sum = i | X = A)$$

$$= \sum_{k=A}^{C} (A + k) \cdot P(Y = k | X = A)$$

$$= \sum_{k=A}^{C} (A + k) \cdot P(Y = k) = \sum_{k=A}^{C} (A + k) \cdot \frac{A}{6} = 4.5$$

So for we defined $E(Y|X=x_i)$, but of the in would be obtained the "function" $E(Y|X)(\omega)$. This is a rv: $E(Y|X): (SL, v', r) \rightarrow (R, R)$. Leads to the following: Def (directe core) X, 4 as before. Then the conditional expectations is defined as follows:

$$E(Y|X) := f(X) \quad with$$

$$f(x) = \begin{cases} E(Y|X=x) & \text{if } P(X=x) > 0 \\ \text{as bibrary, ray } 0 & \text{obsolution} \end{cases}$$

Def (Conditional expectation on
$$L_A$$
)
Counter $vv X : (\Omega_1 F_0, P) \rightarrow R$, $X \in L_A(\Omega, F_0, P)$
(ef F be a rule - 6-algebra of F_0 . (Interview For and In
the 6-alge generated by the variable F are want to condition on).
We now define the could age of X gives F
 $E(X | F)$ as any random variable Z that order fits
(A) Z is measurable out F
(Z) For all $A \in F$ we have
 $\int X dP = \int Z dP$.
A
 A
 F
 $E(X | F)$ is not clear for priori, it useds
to be proved.
 $E(X | Y) := E(X | F(Y))$

• X II Y. E(XIY) = E(X) (a.s.)

Can of joint dempihies

$$X_1 &: S \to \mathbb{R}$$
 have a joint dempihies
Lefg: \mathbb{R} -> \mathbb{R} bounded, put $4 := g(2)$. Assume we
want to compute $E(Y|X) = E(g(2)(X))$.

Recall X has density fx (x) = If (x, 2) dz.

the conditional density of 2 give X== is

$$f_{X=x} (z) = \frac{f(x_{i}z)}{f_{X}(x)} \quad (if f_{X}(x) \pm \partial)$$

Now couride here:= $\int_{Q} (2) f_{X=x} (2) d2$ now define F(Y|X) = h(X).