Probability measure

\n- Given space
$$
\Omega
$$
 (*"abthnet space"*).
\n- Need a 6-algebra of an Ω (*"measurable events"*)
\n- $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
\n- $(A_i)_{i \in \mathcal{N}} \subset \mathcal{A} \Rightarrow \bigcirc A_i \subset \mathcal{A}$ (*"countable union"*)
\n- $\varphi_i \subsetneq \mathcal{A}$
\n- $\varphi_i \subsetneq \mathcal{A}$
\n- *countable inbrechun*
\n- A *mearure* μ *ou* (Ω, \mathcal{A}) *in a function*
\n

 \int $\mathcal{F} \rightarrow$ $\left[\begin{array}{ccc} a_1 & \alpha_2 \end{array} \right]$ u_{α} t is countably additive: If (u_i) ien it a sequence of pairwin disjoint rets, keen

$$
\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mu\left(A_{i}\right)
$$

A mean we have
$$
P
$$
 on a measurable space (Ω, x) is called
\no probability measure 3 $P(\Omega) = 1$.
\nWe element in x we could event.
\nThen (Ω, x, P) is called a probability space.

Example (1): Figure 11
\n
$$
\mathcal{Z} = \{1, 2, ... 6\}, \quad \mathcal{Y} = 3(52) \quad (\text{6-alphon quenched})
$$
\n
$$
b_{\gamma} \text{ Ke 'elementary event's 'f1, f2}, ..., f6?
$$
\n
$$
\rho_{\text{can}} \text{ the left triangle}
$$
\n
$$
\mathcal{V}(\{1\}) = \mathcal{V}(\{2\}) = \frac{\mathcal{P}(\{6\}) = \frac{\mathcal{A}}{\mathcal{C}}}{\mathcal{B}}
$$
\nFor example $\mathcal{V}(\{1, 6\}) = \mathcal{V}(\{1, 6\}) = \mathcal{V}(\{1, 6\}) = \frac{\mathcal{A}}{\mathcal{B}}$

$$
\frac{\pi_{\text{max}} \text{ for } \text{div} \text{ is } \text{div}
$$

Example (2) Normal distribution
\n
$$
S2 = R
$$
\n
$$
A = \text{Borel} - \sigma - \alpha(\mu b/a)
$$
\n
$$
f_{\mu_1 \sigma} : R \rightarrow R
$$
\n
$$
x \mapsto \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$
\n
$$
\rho : \sigma t \rightarrow [J_{\mu_1 \sigma} \cap J]
$$
\n
$$
\rho(A) := \int f_{\mu_1 \sigma}(x) dx
$$

Different types of probability measures

Discrete measure:

$$
SL = \{x_1, x_2, \dots \} \text{ kink or at most countable.}
$$
\n
$$
U = \{C.D.
$$
\n
$$
U = \text{define a probability mean } P: U \to L0, A \} \text{ by}
$$
\n
$$
V = \text{define a probability mean } P: U \to L0, A \} \text{ by}
$$
\n
$$
V = \text{define}
$$
\n
$$
P(Cx_i) = P: P: \text{if}
$$
\n
$$
V = \text{define}
$$
\n<math display="</math>

Dirac means:
For x in R, u define the Dirac measure of u on
$(R, R(R))$ by rebing
δ_x (A) = $\begin{cases} A & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$
SomeNms, Hint is called a point must
$ah = point x$.

A discrete measure on R can be written as a sum of Dirac measures. For example, Mrowing a die can be described as $6 \int_{0}^{2} 4 \cdot 6 \cdot 7 \cdot 7 \cdot 7 \cdot 6$

Measure, as in	deutrino
Countid	$(m^n, \theta \in R^n)$ and the lebogue measure λ .
Countids	$(\mu^u, \theta \in R^n)$ and the lebogue measure λ .
Count which	\int : $\mathbb{R}^n \rightarrow \mathbb{R}^n \geq 0$ that if measure λ and λ have a unique number of λ and λ .
Heur out define a measure λ can \mathbb{R}^n	
b_{λ} relating \int for all $\lambda \in \mathbb{R}^n$.	
λ if the probability measure on $(R^n, \theta \in R^n)$ with <u>density</u> \int	
Wshain: $\lambda = \int_{\lambda}^{\lambda} f(\lambda) d\lambda$.	

Question Can we describe every prob measure on ⁴¹²⁴ Darn in terms of ^a density Answer no Counterexample do Dirac measure

Det	A prob. mean	q	ou	(R^m , $P(R^n)$) if called
alshould, continuous with upper to a well when	no	no	0	
if every p -null set if in a 0 or 1 -null 1				
$\forall R \in P(R^n):$ $p(R) = 0$ $\Rightarrow \neg (R) = 0$				
No halfou: $\neg 0 \ll p$				
No halfou: $\neg 0 \ll p$				
$\varphi(A) = 0 \Rightarrow \varphi(A) = 0$				

Example:
$$
N(0, 1) \ll \lambda
$$

$$
\overbrace{}^{}
$$

Example:
$$
60 \nless A
$$
 because
\n $\lambda(503) = 0$ but $60(63) = A$.

Theorem (Radou-Nilko dym)
\nCaaridu two probimatureo v, p on
$$
(\mathbb{R}^{d}, B(\mathbb{R}^{u}))
$$
. Then the
\nfollowing two shuruants are equivalent:
\n(see *u* at ρ of

$$
(a)
$$
 γ has a density with μ .
\n $(e) \gamma$ is absolutely continuous at μ .

Proof	100a
(4) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (9) \Rightarrow (10) \Rightarrow (11) \Rightarrow (12) \Rightarrow (13) \Rightarrow (14) \Rightarrow (15) \Rightarrow (16) \Rightarrow (17) \Rightarrow (19) <math< td=""></math<>	

Det	p ₁ + mearruou (2, 4). + <i>ir</i> called <u>highulor</u>
with p if the airth A of real, that	
p(A)=0 but \sim (A ^c) = 0	
Example:	A
Element	p=b
Example:	A
However, $A \perp B_0$	
However, $A \perp B_0$	
However, $A \perp B_0$	
Iterms (Recomponihbu by Lebesgue)	
A	Problem
Example:	Example
Example	

such that
$$
v(A_n) \nearrow \alpha
$$
. By countable odd, $h \circ h$ is a
\nwe get $v\left(\bigcup_{n \in N} A_n\right) = \alpha$.

\nLet $v_1 : A \mapsto v(A \cap N^c)$

\nLet $v_1 : A \mapsto v(A \cap N^c)$

\n $v_2 : A \mapsto v(A \cap N)$

e

$$
p_{\rho\eta} \mu_{\mathfrak{e}} j_{\rho} \mathfrak{e}.
$$

Caubr - dirtrilubibu: 1001 - frivial dirhi Lubbu. 4001
ir siugulu wrt
$$
\lambda
$$

Cumulative distribution function Let P is a prob-measure on (R, BCR). Define the funtion $F: \mathbb{R} \rightarrow \mathbb{R}$, $x \mapsto \mathbb{P}(1-\infty, \kappa)$. We say that F is a cumulative distribution function (cdf), Heat it satisfies the following prov properties: (i) F is monotonically increasing, $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$. F is continuous from the right: (x) $(k_{\mathsf{u}})_{\mathsf{u}}$ require ω^{u} k_{u} \searrow x $(i.e.$ $x_n \ge x_{n+1}$ and $x_n \to x$) then also $F(x_u) \rightarrow F(x)$. F

150

Let F: R -> R be a function with properties (i) and (ii). Then there cent a unique prob. measure P on (R, BCR)) \mathbf{F} and $\mathbf{F}(\mathbf{F}) - \mathbf{F}(\mathbf{x}) = \mathbf{F}(\mathbf{x})$.

Raudom variable

Def	Let $(\mathcal{R}, \mathcal{A}, \rho)$ be a probability space, $(\mathcal{X}, \mathcal{X})$ be a probability space, $(\mathcal{X}, \mathcal{X})$ be a number measurable space. A mapping: $X : \mathcal{R} \rightarrow \tilde{\mathcal{Z}}$	
is called a number variable if X if measurable, i.e.		
$W \mathcal{X} \in \tilde{\mathcal{X}}$: $X^{-1}(\mathcal{X}) : \{\omega \in \mathcal{R} \mid X(\omega) \in \tilde{\mathcal{X}}\} \in \mathcal{X}$		
Q	$\begin{pmatrix} \frac{\partial A}{\partial X} \\ \frac{\partial A}{\partial X} \end{pmatrix}$	$\begin{pmatrix} \frac{\partial A}{\partial X} \\ \frac{\partial A}{\partial X} \end{pmatrix}$
$q = \begin{pmatrix} \frac{\partial A}{\partial X} & \frac{\partial A}{\partial X} \\ \frac{\partial A}{\partial X} & \frac{\partial A}{\partial X} \end{pmatrix}$		
$A = \begin{pmatrix} \frac{\partial A}{\partial X} & \frac{\partial A}{\partial X} \\ \frac{\partial A}{\partial X} & \frac{\partial A}{\partial X} \end{pmatrix}$		
$f(A) = 0.1$		

$$
\begin{array}{lll}\n\hline\n\text{Example:} & \text{sum } \mathbf{r}^2 \text{ } \text{for all } \mathbf{r}^2 \text{ } \\
& \Delta = \left\{ (i,j) \mid i,j \in \{1, \ldots, 6\} \right\} \\
\text{or} & \Delta = \left\{ (i,j) \mid i \in \{1, \ldots, 6\} \right\} \\
\text{or} & \Delta = \left\{ (2,1) \right\} \\
\text{or} & \Delta = \left\{ (2,2) \right\} \\
$$

Let	A random variable	X	52 - \$X	induces on mean sur																																																															
ou	ka	hopef	efocce:																																																																
For	Å	e	W	we define																																																															
P_X	(X)	=	f	(X^{-1} (X)																																																															
Thus	For	ko	po	to	do																																																														
Tabled	the	of	to	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	do	

Let
$$
X: (\Omega, d, P) \rightarrow (\tilde{\Omega}, \tilde{d}).
$$
 Thus the family
\n $G(X) := \{ X^{-1}(\tilde{X}) | \tilde{d} \in \tilde{d}^{\prime} \}$
\nis a G -algebra on Ω and it is called the G -algebra
\ninduced by X
\n $(i f)$ the smallest G -algebra on Ω that when X meansable).

Conditionalprobabilities P An B ^P A and B An B P Au B poi or B is camp posasini space ^A ^B ^e it ^P Bl ⁰ then P AnB is called the P AI B P B of A given B a y theorem The mopping Pp ^A ^o ⁿ ^A PCAI^B is ^a t it is called theconditional probability measure ou ^r ^d ^h of ^P with respect to ^B

Example: two dice
\n
$$
P(
$$
arum is 10^a)^u first does not 5^a)

Bayes formula

 $\begin{array}{|c|c|c|c|c|c|c|c|c|}\n\hline\n\text{b} & \text{c} & \text{d} & \text{d} & \text{e} & \text{f} & \text{f} \\
\hline\n\text{c} & \text{d} & \text{e} & \text{f} & \text{f} & \text{f} & \text{f} & \text{f} & \text{f} \\
\hline\n\text{d} & \text{e} & \text{f} \\
\hline\n\text{e} & \text{f} & \text{f$ bility: Let $B_{n_1}B_{2_1} \cdots B_{n_r}$ be a disjoint partition of S with Bi E et for all i , and AEK. Then

u $=$ $\sum_{i=1}^{n} P(A \cap B_{i})$ $P(A) = \sum_{i=1}^{n} P(A | B_i) \cdot P(B_1)$ = $\sum_{i=1}^{n} P(A_i | B_i)$

$$
\frac{\mathcal{S}_{\alpha\gamma}\omega_{\beta} \text{ for } \mu \text{ ula}}{\varphi(\text{g}: | \text{A})} = \frac{\varphi(\text{A}|\text{g}t) \cdot \varphi(\text{g}t)}{\sum_{i} \varphi(\text{A}|\text{g}t) \cdot \varphi(\text{g}t)} = \frac{\varphi(\text{A}|\text{g}t)}{\varphi(\text{A})}
$$

Example: breast cancer screuing above 40 have breast cancer Assume 1% of all women 90% of women with breast cancer to will be kokt position. ("true positions") 8% of women without brast cance will receive a positive rout as well ("false positives") Gives Mat a woman receives a positive test result, what is the likelihood that she has breast cancer?

$$
P_{(aucer | positive}) = \frac{P(positive | caucer) \cdot P(aucer) \cdot P(poltive) \cdot P(polt
$$

$$
= \frac{0.3 \cdot 0.01}{0.3 \cdot 0.01 + 0.01 \cdot 0.99} \approx 10\%
$$

Independunce

Correity a probability space
$$
(R, f, P)
$$
. Two events
\n $A, B \in H$ are called indamental if
\n $P(A \cap B) = P(A) \cdot PCB$

Observation: A is independent of $I \Leftrightarrow P(A|B) = P(A)$

A family of exactly
$$
(Ai)_{i \in I}
$$
 if called independent
\n
$$
i \downarrow
$$
 for all *limit* subset $\int C$ in *then*
\n
$$
\rho \left(\bigcap_{i \in I} A_{i} \right) = \prod_{i \in I} \rho(A_{i})
$$
\n
$$
\vdots
$$
\n
$$
\left(\text{Family is called positive independent if } K_{i,j} \in I:
$$
\n
$$
\rho(A_{i} \cap A_{j}) = P(A_{i}) \cdot P(A_{j}) \text{, This does not\n
$$
\text{in } \rho \vee \text{ind } \text{graph } \in \mathcal{C}
$$
$$

Two rendom variables $X: \mathcal{L} \to \mathcal{L}_1$, $Y: \mathcal{L} \to \mathcal{R}_2$ are called independent if their induced 6 -algibras 6 (x), 6 (u) are independent $V A \in \sigma(Y), \quad B \in \sigma(Y): \quad P(A \cap B) = P(A) \cdot P(B)$

Notation for independence:

$$
\begin{array}{ccccc}\nA & \underline{\textbf{M}} & \underline{\textbf{S}} \\
X & \underline{\textbf{L}} & \underline{\textbf{Y}}\n\end{array}
$$

Expectation (discrete case)

Consider a discrete random variable X . $\Omega \rightarrow \mathbb{R}$ $(M_{\alpha\alpha}f\cdot r,\quad X(\Omega)$ ir at most countable).

Definition	(Q, U, P) Prob. space	$S \subset R$ at most to W is a W to S is a W to S .
1	$\sum_{r \in S} r \cdot P(X = r) \leq \infty$, W is called the expectation of X .	
$E(X) := \sum_{r \in S} r \cdot P(X = r)$ is called the expectation of X .		
$($ sometimes people with $EX \cdot E(X) \cdot E(X \cdot E(X))$.		

E S

-
$$
T_{\text{DFT}} \propto \text{coiv. } \Omega = \{\text{head, full}\}, \quad \mathcal{A} = \mathcal{F}(\Omega) \mid \frac{p(\text{head}) = p}{p(\text{fail}) = 1-p}.
$$

\n
$$
\mathcal{B} = \{ \text{head, full}\} \land \text{real} \rightarrow \mathcal{B}(\Omega) \text{ such that } \mathcal{B} = \mathcal{B} \land \text{real} \rightarrow \mathcal{B}.
$$
\n
$$
\mathcal{B} = \{ \text{head, full}\} \land \text{real} \rightarrow \mathcal{B}.
$$
\n
$$
\mathcal{B} = \{ \text{head, full}\} \land \text{real} \rightarrow \mathcal{B}.
$$

Test error of ^a classifier

$$
\underline{\mathcal{P}ef} \qquad A \quad \text{or} \quad \text{is} \quad \text{called} \quad \text{``caduced''} \quad \text{if} \qquad \text{E(x)} = 0.
$$

Unportout $polyubio$:	
Linear: $E \left(\begin{array}{cc} a \cdot X & b \cdot Y \\ d \end{array} \right) = a \cdot E(X) + b \cdot E(Y)$	
ER	GR

· X, Y independent => $E(X,Y) = E(X) \cdot E(Y)$

$$
\sum_{i,j} |x_i y_j| \quad f(\chi_{\sigma x_{i,j}} \mid \sigma y_j) =
$$

\n
$$
= \sum_{i,j} |x_i y_j| \quad f(\chi_{\sigma x_{i,j}} \mid \sigma y_j) =
$$

\n
$$
= (\sum_{i} |x_i| \mid y_j| \quad (\sum_{j} |y_j| \mid (y_{\sigma y_{j}}))
$$

\n
$$
= (\sum_{i} |x_i| \mid (x_{\sigma x_{i,j}}) \mid (\sum_{j} |y_{j}| \mid (y_{\sigma y_{j}}))
$$

Variable			
$Varimize, Covariance, Correlation$			
Q_{eff}	$K_{i} Y$:	$(Q_{i}, \psi_{i} \varphi) \Rightarrow R_{i}$	directs vs will
$E(X^{2}) \leq \omega_{i} E(Y^{2}) \leq \omega_{i}$			
Here	$Var(X) := E((X - E(X))^{2})$		
if called He Variable	$Var(\omega_{i}) = \pi_{X}$		
if called the channel	K_{ij}		
G_{ij}	$Var(\omega_{i})$		
$Var(X_{i} \varphi) := E((X - E(X)) \cdot (Y - E(Y)))$	$Var(\omega_{i})$		
$Var(X_{i} \varphi) := Var(X_{i})$	$Var(X_{i})$		
$Var(X_{i} \varphi) = \varphi_{i}$	$Var(X_{i})$		

lution about covariance	
$C_{ov}(X, Y) = E((X - E(X)) \cdot (Y - E(Y)))$	
Y	Y
W	Y

X = moe rize

Cov 2 O
(uncorrelated).

$$
C_{ov}(x, y) = Cov(Y, x)
$$

$$
\cdot \quad V_{\infty}(\mathcal{K} \times \mathcal{Y}) = V_{\infty}(\mathcal{K}) \times V_{\infty}(\mathcal{U}) \cdot G_{\infty}(\mathcal{K}, \mathcal{Y})
$$

$$
. \qquad x, 9 \quad \text{indupudent} \qquad z) \qquad \text{Gov} \quad (1, 9) = 0
$$

 X_{l} 4 independent => Var $(X \star Y)$ = Var (X) + Var (Y) .

Expectation and variance in the Juwal setting

$$
L^{k}(0,0,0):=\{X:\Omega\rightarrow\mathbb{R} | X
$$
measureded
 $\int_{\Omega} |X^{k}| dP < \infty \}$

 $(S, \mathfrak{a}, \mathfrak{p})$ prolo. space, $X \cdot SZ \rightarrow \mathbb{R}$ with distribution $P_X = X(P)$, $X \in L^{1}(S, x, P)$. The <mark>expectation</mark> of X is then defined as

$$
E(X) = \int_{\Omega} X dP = \int_{\mathbb{R}} x dP_{X} dx
$$
\n
$$
= \int_{\mathbb{R}} x dP_{X} dx
$$
\n
$$
= \int_{\mathbb{R}} x f(x) dx
$$

If
$$
X^{k} \in L^{n}(\mathcal{L},d,\rho)
$$
 then
\n $E(X^{k}) = \int x^{k}dP$ is called the *k*-*k* moment of *X*.
\nIf $X \in L^{2}(\mathcal{L},d,\rho)$ we define

$$
Var(X) = E((X - E(X))^{2})
$$

$$
C_{ov}(X,Y) = E((X - E(X)) \cdot (9 - E(Y)))
$$

Marhou and Chebysher inequalities

$$
\frac{Cauchy-Sclwwff - inequalify}{X, Y \in L^{2} (Q, d, P).}
$$
 Then:

$$
E(X.Y|^{2} \leq E(X^{2}) \cdot E(Y^{2})
$$

Multiply	Example 2	Example 3	Example 3	Example 4
However, $0,000$	It is a a good solution for a single solution.			
However, $0,000$	It is a a good solution for a single solution.			
Figure 1.11	1.12			
Figure 2.12	1.13			
Figure 3.13	1.14			
Figure 4.13	1.14			
Figure 5.13	1.14			
Figure 6.141	1.14			
Figure 1.13	1.14			
Figure 1.13	1.14			
Figure 1.13	1.14			
Example 2.13	1.14			
Example 3.13	1.14			
Example 4.13	1.14			
Example 5.13	1.14			
Example 6.13	1.14			
Example 1.13	1.14			
Example 1.13	1.14			
Example 1.13	1.14			
Example 1.13	1.14			
Example 1.13	1.14			
Example 1.13	1.14			
Example 1.13	1.14			
Example 1.13				

$$
\begin{array}{ccccc}\n\text{[} & \text{[} & \
$$

Cuebyshev inequality:
$$
\Sigma > 0
$$
, $X \in L^{2}(\mathbb{R}, u, P)$. Then:

\n
$$
\rho(1 x - E(x) \mid > \mathcal{E}) \leq \frac{Var(X)}{\mathcal{E}^{2}}
$$
\nEvery quantity in leaving *linear* gives

Examples of probability distributions

Discrete distributions

. luifarm drift. ou
$$
\{1, ..., u\}
$$
 : $P(\{i\}) = \frac{1}{n}$

$$
\begin{array}{ll}\n\text{Binomial distribution} & \text{or} & \{0, ..., u\} \\
\hline\n\text{Tostr } & \text{coiv } u \text{ times, index multiply } & \text{each line while } w \text{ with } \\
\text{poshability } & \text{of } b \text{ serving head.} & \text{Deuok head} = 1, & \text{for:} 10, \\
X := & \text{thead}\n\end{array}
$$
\n
$$
P(X = k) := \begin{pmatrix} u \\ k \end{pmatrix} r^{k} (1-p)^{n-k}\n\end{array}
$$

$$
\frac{\text{Poisson dirhibufibn on }M}{\text{Pareute}} = \frac{A^{k} e^{-1}}{k!}
$$

Intuition: number of incoming calls at a hothine.

coutiuuousdistibu.hu UuiZuh'en ou Ca ^b constant density II

 α

 \mathbf{b}

 \ddag

Normal distribution on R

$$
N_{\rm obs}h_{\rm ion};\quad \mathcal{V}\left(\rho_1\;\sigma^2\right)
$$

Some first propulses: \cdot X \sim N (μ_{d} σ_{1} ²) γ \sim N (μ_{2} , σ_{2} ²), χ , 4 inde pendent. Then $X+Y$ a $N \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right)$

Normal distribution from in highu dina with
\n
$$
X: S2 \rightarrow R^{n}
$$
, $X = \begin{pmatrix} x_{n} \\ \vdots \\ x_{n} \end{pmatrix}$, $p_{i} \in E(X_{i})$, $p = \begin{pmatrix} r_{i} \\ \vdots \\ r_{n} \end{pmatrix}$

 $\sum e R^{n \times n}$ with \sum_{ij} = Cov (x_i, x_j) , called covariance matrix.

$$
f_{\mu, \Sigma}
$$
 (x) = $\frac{1}{(\ell \pi)^{n/2} (\det \Sigma)^{n/2}}$ $exp(-\frac{1}{2}(x-\mu)^{\epsilon} \Sigma^{n}(x-\mu))$

 $\boldsymbol{\mu}$ shation: $\mathcal{W}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
\int_{X} x \cdot N(\mu_{1}, \Sigma_{1}), \quad \{v \in N(\mu_{2}, \Sigma_{2}), \text{ independent, } \mu_{1}v_{1}, \dots, v_{n}v_{n} \}.
$$

Counder π_1 π_2 , π_k with $0 \leq \pi_i \leq n$ and $\geq \pi_i = n$ Couride the pollowing devoits: \mathbf{L}

$$
\int (x) = \sum_{i=1}^{k} \overline{u_i} \cdot \int_{\mu_{i}} \mu_{i} Z_{i}^{(k)}
$$

Councyme of random variates

Convidur rv
$$
X_i : \Omega \rightarrow \mathbb{R}
$$
, i.e N, $X : \Omega \rightarrow \mathbb{R}$,
(s_i, s_j, ρ) a probability space.

(A)
$$
(X_{i})_{i \in \mathbb{N}}
$$
 couvges to X almost rule $: \Leftrightarrow$
 $\mathcal{C} \left(\{ w_{\epsilon} \& | \lim_{i \to \infty} X_{i} \wedge w \right) = X(\omega) \} \right) = 1$

Notation: $X_i \rightarrow X$ a.s.

(a)
$$
(x_i)_{i \in \mathbb{N}}
$$
 couvipo to X in probability $: \Leftrightarrow$
\n $\forall \xi > 0 \quad P(\{\text{neg } \mathcal{R} | |x_{i(\omega)-X(\omega)}| > \xi\}) \longrightarrow 0$

Let us diech Kat there definitions mohe sense. We need to Heat the events in (1) and (2) as in fact in the it. pron Case (1): $\lim_{i \to \infty} X_i(\omega) = X(\omega)$ $\begin{array}{lll} \angle & \rightarrow & \forall h \in \mathbb{N} \exists h \in \mathbb{N} \forall u > h: & \left| X_{u} \left(w \right) - X_{u} \right| & & \leq \frac{\Delta}{h} \end{array}$ So we get:

$$
\begin{cases}\n\omega | X_{i}(\omega) \rightarrow X(\omega) \} \\
= \bigcap_{k \in \mathbb{N}} \bigcup_{h \in \mathbb{N}} \bigcap_{n \geq N} \{\omega | X_{i}(\omega) - X(\omega) | < \frac{1}{k} \} \\
\text{with } \omega \neq 0\n\end{cases}
$$

aud in kredinu	2π
$ x_a - x $ is measurable	
3π	3π

$$
\begin{array}{lll}\n\text{(3)} & X_n \rightarrow X \text{ in } L^{\rho} \quad (\text{ in the } \rho-\text{ in } \text{mean}^{\bullet}) & : \text{G)} \\
& X_{n,k} \in L^{\rho} \quad \text{and} & \|X_{i}-X\|_{\rho} \implies 0 \\
\end{array}
$$

(4) Let
$$
M^{A}(n^{n})
$$
 be the ref of all probability invasons by
\n $(n^{n}, \theta(a^{n}))$. Assume $(\mu_{\omega_{n}} \in M^{A}(n^{n})$, $\mu \in M^{*}(n^{n})$.
\n $C_{b}(n^{u}) :=$ space of bounded continuous functions.
\n $\mu_{n} \rightarrow \mu$ weakly: \Rightarrow
\n $\forall f \in C_{b}(n^{u})$. $\int f d\mu \rightarrow \int f d\mu$
\n $\mu_{n} \rightarrow \mu$

Mont June

(5)
$$
X_{i,k}: (R, d, P) \rightarrow R^{u}
$$
. The sequence $X_{i,k}$
Causy, in distribution $f(x; X) := \Leftrightarrow$
the distribution $P_{X_{i,k}}$ converge to P_{X} areally.

We know the following in plus 1:
$$
sinh(x)
$$
 (but now of the matrixing in L^n)

\nalmost surely

\nin probability

\nin probability

\nin distribu

\nin distribu

\nin distribu

$$
E \times \text{angle} \quad (Couv. \text{ in addition, but not in } \text{poly.})
$$
\n
$$
X_{u} : [S_{1} \land J \rightarrow \mathbb{R}, X_{1} = X_{2} = ... = 1 \text{ so } \frac{1}{2} \text{ so } \frac{1}{2} \text{ to } \frac{1}{2
$$

Theorem of Borel - Can telli

(su, d, P) prob. Mace, $(A_u)_u$ requence of events in ct. $P(A_n)$ infinitely of h_n) $:= P(A_n \cap i \cdot o.)$ = $P(\lbrace w \in \Omega \mid w \in A_n \text{ finitivial} \rangle way u \}$

Proposition: $X_{n,k}$ x.v. ou $(X_{n,k}A_{n},P)$. X_{11} \rightarrow X a.s. \langle => $\forall \epsilon > 0 : P\Big(\{ |X_u - X| > \epsilon \} \text{ inf. s} / \epsilon \Big) = 0$

metiulinta foort \int lim $X_{u} = X$ = $\begin{cases} \forall k : |X_{n}-X| > \frac{1}{k} \text{ at most } |X_{n}|, \text{ s.t. } \\ \end{cases}$ = $\bigcap_{k \in \mathbb{N}} \{ |x_{k}-x| > \frac{A}{k} \text{ of } \text{unit } f\text{ in. } \text{a}f\text{ in. } \}$ $(\bigcup_{k\in\mathbb{N}} {\left\lceil |x_{k}-x| > \frac{1}{k} \quad \text{inf. of } k \right\rceil}$ couplement

$$
\frac{\mu_{\text{deorem}}:}{(1) \ 1} \quad \text{Cauchy} \quad \text{a sequence of } \quad (\mathcal{A}_{\nu})_{\nu} \subset \nu.
$$
\n
$$
(1) \ 1 \quad \sum_{n=1}^{\infty} P(A_{\nu}) \leq \infty, \quad \text{then} \quad P(A_{\nu} \text{ i. } \theta.) = 0.
$$

(2) If
$$
\sum_{n=1}^{\infty} P(\lambda_n) = \infty
$$
, and if $(\lambda_n)_{n}$ are independent,
Heu $P(\lambda_n : \cdot \cdot \cdot) = \lambda$.

Application in leaving *Hestry:*

\nAssume that
$$
P(|x_{u}-x| > \frac{1}{u}) < \delta_{u}
$$
, and
assume that $\sum_{u=1}^{\infty} \delta_{u} < \infty$. Here, you can use $\int P(|x_{u}-x| > \frac{1}{u})^2 \leq \delta$.

\nSecond-Gauth: to prove that

\n $P(|x_{u}-x| > \frac{1}{u} \cdot \delta_{u}) > 0$,
\nThus $X_{u} \rightarrow X_{u} \cdot S$.

Limit Meoreus: LLN and CLT

Through law of layer number

\n
$$
\chi_{n} : (\Omega, d, r) \rightarrow \mathbb{R} \quad \text{iid} \quad (\text{ideuhically distributed and} \text{duchb,} \text{dAndb,} \text{dAndb
$$

. Hany veritar of this theorem exist. (sliphtly velocing iid) . "Strong law" conveymer a.r. "Weah law" (=> couverprise in possability

Countual Limit Hospital
\n
$$
(x_i)_{i \in \mathbb{N}}
$$
 iid rv with mean p_1 *voisunc* $6^2 < \infty$.

\nCounting the rv $S_n := \sum_{i=1}^n x_i$. We normalize if to
\n $V_n := \frac{S_n - n \cdot p}{\sqrt{n} \cdot \sigma}$ (cyluid by mean 0 and drawn 1).

\nWhen $V_n \rightarrow V$ in distributition values $V \sim N(0, \Lambda)$.

Couceutration mequalities

Hotivation: random projections

$$
R^{d} \int d \log x
$$
\n
$$
= R^{d} \int d \log x
$$
\n
$$
= \int d
$$

Hoeffding	Liequality	
Heore on	(Hoefdd'ny):	$k_1, ..., k_n$ rv, indupu
arvune	Wuf	$k_i \in [a_i, b_i]$ a.s. $\{v_i : a_1, ..., a_n\}$
Let	$S_n := \sum_{i=1}^n (x_i - E(x_i))$. Then for any $t > 0$,	
$P(S_n \geq t) \leq exp(-\frac{2k^2}{\sum_{i=1}^n (b_i - a_i)^2})$.		

Applichis a of Hospitaling:
$$
SLLN
$$

Prop $(X_{i})_{i\in N}$ find W_{1} $a \leq X_{i} \leq b_{1}$ left X have the same
then: $\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow E(X)$ a.s.

$$
\int_{0}^{\infty} \frac{f}{f} \cdot d\mu \leq \int_{0}^{\infty} f \cdot
$$

$$
= \rho\left(\begin{array}{c}\frac{1}{n}\sum(-x_i)-E(-x) > t\end{array}\right) \stackrel{\text{f}}{=} \exp\left(-\frac{\int u\,b^{\mathfrak{e}}}{(b-a)^{\mathfrak{e}}}\right)
$$

Countrind we pt
\n
$$
\rho\left(\begin{array}{c|c}\n1 & \frac{1}{4} \sum x_i - E(x) & 7 \leq 1\n\end{array} \right) \leq 2 \exp\left(-\frac{2nt^2}{(6-a)^2}\right).
$$

 D want to a ρ_1 , β and cautelli to ρ t a.s. countpuce: $Z_n := \frac{A}{n} \sum_{i=1}^{n} K_i$ $24t^2$ 4 \bullet ∞

$$
\sum_{n=0}^{\infty} P(z_n - E(k) > t) \leq 2 \cdot \sum_{n=0}^{\infty} eq(-\frac{2Lt}{(b-a)^2}) \leq 0
$$

$$
= \sum_{n=0}^{\infty} sum
$$

Subrlnh!... $r := \exp(-\frac{2Lt^2}{(b-a)^2}) \in \sum_{n=0}^{\infty} n$

$$
66 \text{cm}: \quad \exp\Big(-\frac{2nt^2}{(6\pi)^2}\Big) = n^2
$$

$$
sum = 2 \sum_{n=0}^{\infty} r^n = 2 \cdot \frac{1}{1-r} < \infty.
$$

Now Borl-Courtlli pins almost rue courrepuce.

Remaki Hoeffding is tight cannot be improved without furtherassumphbus For fair coin tosses it is higher But not tight if coin is biased need other inequalities

Bernstein inequality

$$
\frac{\text{Hres}_{\text{restrum}}(\text{Fourkin})}{|x_{i}| \leq A \text{ a.s.} \text{ Let } 6^{2} := \frac{A}{n} \sum_{i=1}^{n} \text{Var}(x_{i}). \text{ Here}}
$$
\n
$$
\text{for all } t > 0
$$
\n
$$
\text{for all } t > 0
$$
\n
$$
P(\frac{A}{n} \sum_{i=1}^{n} x_{i} > t) \leq \exp\left(-\frac{n t^{2}}{2(6^{2} + 6/3)}\right)
$$

Concentration inequality for function with bound all-
Counted a function
$$
f: \mathbb{R}^n \rightarrow \mathbb{R}
$$
 (or user quoted f)
 $f: \mathbb{X}^n \rightarrow \mathbb{R}$ for some "arbinary" space \mathbb{X}).
the say that f lies the bounded difference property if
Here exist counters on f and f are not f is not f is not f .

$$
\begin{array}{ccc}\n\mathcal{B} & \text{sup} & |f(x_1,...,x_{i-1},x_i, x_{i+1},...,x_n) \\
x_1...x_n \in X & -f(x_1,...,x_{i-1},x_{i-1},x_{i+1},...,x_n)| \leq c_i\n\end{array}
$$

Examples:
$$
f^{(k_1,...,k_n)=\sum_{i=1}^{n}x_i}
$$
, and $e \in x_i \in b$ if, $f(x)$

It
\nIt
\nIt
\n
$$
f: \chi_{1} \leftarrow \chi_{2} \rightarrow \chi_{2}
$$

\n $f: \chi_{1} \leftarrow \chi_{2} \rightarrow \chi_{2}$
\n $f: \chi_{2} \leftarrow \chi_{3} \rightarrow \chi_{4}$
\n $f: \chi_{3} \leftarrow \chi_{4} \rightarrow \chi_{5}$
\n $f: \chi_{4} \leftarrow \chi_{5} \circ \chi_{6}$
\n $f: \chi_{6} \leftarrow \chi_{7} \circ \chi_{8}$
\n $f: \chi_{8} \leftarrow \chi_{9} \circ \chi_{1} \circ \chi_{1}$

Glivenho- Cantelli Theorem

$$
F \circ d_{i}: F(a) = P(X \le a)
$$

\n $X_{1},..., X_{u} \sim F \qquad i: id$
\n $F_{n}: \mathbb{R} \rightarrow [0, 1]$
\n $F_{u}(a) := \frac{1}{n} \sum_{i=1}^{n} M_{\{X_{i}: \le a\}}$

Now fix are positive for
$$
a_0 \in \mathbb{R}
$$
.
\n $F_{\mu}(a_0) \longrightarrow F(a_0)$ by the law of any numbers.
\n
\n $\mu_{\{\kappa_i \leq a_0\}}$ if a B_{μ} will
\n $\rho = P(\kappa_i \leq a_0)$.

So it it clear that $f_n \rightarrow f^{n+1}$ pointwise (i.e. ra_{θ}) New let's look at milpour couverpurce.

 $x_1, ..., x_n$ priid vandom variables with $cd \neq f$. Kleoren Let Fu be the empired cdf induced by the sample. Then: $P(\begin{array}{cc} sup\\ asR \end{array}|$ $F_{n}(a) - F(a) | > \mathcal{E}) \le$ $\leq \int$. (u+1). $exp(-\frac{uE^{2}}{22})$ $\begin{array}{ccc} \n\lfloor \mu \rfloor & \text{if } \mu \leq \nu \leq \nu \end{array}$ of $\begin{array}{ccc} \n\lfloor \mu \rfloor & \text{if } \mu \leq \nu \leq \nu \end{array}$ of $\begin{array}{ccc} \n\lfloor \mu \rfloor & \text{if } \mu \geq \nu \end{array}$ i.e. Fu -> F uniformly a.r.

$$
\frac{\rho_{\text{no.s.}}}{\rho_{\text{no.s.}}}
$$
 $\frac{\rho_{\text{two.s.}}}{\rho_{\text{two.s.}}}$ $\frac{\rho_{\text{on}}}{\rho_{\text{on}}}$ $\frac{\rho_{\text{on}}}{\rho_{\text{on}}}$ $\frac{\rho_{\text{on}}}{\rho_{\text{on}}}$ $\frac{\rho_{\text{on}}}{\rho_{\text{on}}}$

Problem:	head	to both at
\n $P(\overrightarrow{fng}) \mid Fucq = F(n) \mid > \varepsilon$ \n		
\n $\frac{d}{dt} \overrightarrow{f}ucat$ \n	\n $\frac{d}{dt} \overrightarrow{f}ucat$ \n	\n $\frac{d}{dt} \overrightarrow{f}ucat$ \n
\n $\frac{d}{dt} \overrightarrow{f}cust$ \n	\n $\frac{d}{dt} \overrightarrow{f}cust$ \n	
\n $\frac{d}{dt} \overrightarrow{f}cust$ \n	\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right) =$ \n	
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\frac{u}{t} \mid > \varepsilon \right)$ \n		
\n $\frac{d}{dt} \left(\$		

 $|red - blue|$ ≤ 2 | green - blue |

Step 1:	Symmetric as his key about sample	
Arrows	$X_1' \cdots X_n' \sim F$ in the number X_1' (⁸) bscol- ky	F_n' the empirical cdf induced by short sample
Now if it carry to now:		
φ (sup $ F_n(x) - F_{\{0\}} > \varepsilon$)		
$\frac{1}{x} \cdot \frac{1}{x} \cdot$		

$$
\varphi
$$
 $\begin{bmatrix} \frac{F_u}{a} & -\frac{F_{ca}}{a} & -\frac{F_{ca}}{a} & -\frac{F_u}{a} & -\frac{F_u}{a} & -\frac{F_u}{a} & -\frac{F_u}{2} \end{bmatrix}$

$$
\frac{5h_{\varphi}2: \text{bouth to split this is two hours}}{1 F_{\varphi}(a) - F_{\varphi}(a)} = 1 \frac{1}{a} \sum_{i=1}^{a} (4/(\chi_{i} \leq a) - 4/(\chi_{i} \leq a)})
$$

In module Radeuna duei raudou van's 54% 61, ..., 6n
6: (
$$
5-3
$$
) = 0. (51) = 1/2.

Dittribution of @ ir the same as the didn. of the following:

$$
\left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| G_{\zeta} \left(1 + \sum_{i=1}^{k} \chi_{i} \leq a_{i}^{2} \right) = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}^{k} 1 \\ 0 & \sum_{i=1}^{k} 1 \end{array} \right| = \left| \begin{array}{cc} 1 & \sum_{i=1}
$$

Now are hom:

2
$$
P\left(\sup_{x \in \Lambda} |f_{\alpha}(x) - f_{\alpha}'(x)| > \frac{\epsilon}{2}\right)
$$

\n
$$
= 2P\left(\sup_{x \in \Lambda} |f_{\alpha}^{\dagger} \Sigma_{\sigma} : (A_{\chi_{\sigma}(x_{n}} - A_{\chi_{\sigma}(x_{n}}))| > \frac{\epsilon}{2}\right)
$$
\n
$$
\frac{2}{\pi} \left(2P\left(\sup_{x \in \Lambda} |f_{\alpha}^{\dagger} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}| > \frac{\epsilon}{4}\right) + 2P\left(\sup_{x \in \Lambda} |f_{\alpha} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}| > \frac{\epsilon}{4}\right)\right)
$$
\n
$$
= 2P\left(\sup_{x \in \Lambda} |f_{\alpha}^{\dagger} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}| > \frac{\epsilon}{4}\right) + 2P\left(\sup_{x \in \Lambda} |f_{\alpha} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}| > \frac{\epsilon}{4}\right)
$$
\n
$$
= 4 \cdot P\left(\sup_{x \in \Lambda} |f_{\alpha} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}\Sigma_{\sigma} \right) > \frac{\epsilon}{4}\right)
$$
\n
$$
= 4 \cdot P\left(\sup_{x \in \Lambda} |f_{\alpha} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}\Sigma_{\sigma} \right) > \frac{\epsilon}{4}\right)
$$
\n
$$
= 4 \cdot P\left(\sup_{x \in \Lambda} |f_{\alpha} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}\Sigma_{\sigma} \right) > \frac{\epsilon}{4}\right)
$$
\n
$$
= 4 \cdot P\left(\sup_{x \in \Lambda} |f_{\alpha} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}\Sigma_{\sigma} \right) > \frac{\epsilon}{4}\right)
$$
\n
$$
= 4 \cdot P\left(\sup_{x \in \Lambda} |f_{\alpha} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{n}}\Sigma_{\sigma} \right) > \frac{\epsilon}{4}\right)
$$
\n
$$
= 4 \cdot P\left(\sup_{x \in \Lambda} |f_{\alpha} \Sigma_{\sigma} : A_{\chi_{\sigma}(x_{
$$

Step 4

\nHow, the following be (k)

\n
$$
W_{\alpha}:
$$

\n
$$
W\left(\frac{A}{n}|\sum_{i=1}^{n} \delta_i \cdot M_{\chi_i \in \mathfrak{a}}| > \frac{\xi}{q} \mid \chi_{q...}\chi_{q}\right)
$$

\n
$$
\leq 2 \exp\left(-\frac{\ln \xi^{2}}{32}\right)
$$

Contining enrything fine the Kessen.

Product space, joint distributions

Countials two measurable spaces
$$
(R_A, d_A)
$$
, (R_2, d_2) .
\nDefine the product space $(R_1 * R_2, d_A) \text{ with } R_1 * R_2 = \{ (w_1, w_2) | w_1 \in R_1, w_2 \in R_2 \}$
\n $\int_{R_1} \theta \, d_2 = \{ A_1 * A_2 | A_1 \in A_1, w_2 \in R_2 \}$
\n $\int_{R_1} \theta \, d_2 = \{ A_1 * A_2 | A_1 \in A_1, A_2 \in R_2 \}$.
\nCountial to two roots $K_1 : (R_1, d_1) \rightarrow (R_1, d_2)$.
\n $K_2 : (R_1, d_1) \rightarrow (R_2, d_2)$.
\n $(K_1, K_2) : (R_1, d_1) \rightarrow (R_1 * R_2, d_1) \in R_1$, $(K_1, K_2) \text{ with } R_1$.
\n $(K_1, K_1) \text{ with } R_2$ on $(R_1 * R_2, d_1) \text{ with } R_3$.
\nHue dìrth' bathbunha, s $\neq K_1$ and K_2 .
\nExample in H1: (K_1, K_1) when K_1 in the input data, K_1 in the label, K_1 is the label, K_1 is the label, K_1 is the input data, K_2 .

Product measure:
$$
(a_1, d_1, P_1)
$$
, (a_2, d_2, P_2) two
\nprob. spaces. We define the product mean $P_A \otimes P_2$ on
\nMie product space $(a_1 * a_2, d_2 * a_3)$

$$
(\rho_{1} \otimes \rho_{2}) (\lambda_{1} \cdot \lambda_{2}) := \rho_{1} (\lambda_{1}) \cdot \rho_{2} (\lambda_{2}).
$$

Theorem Two res $x_{ij}x_{ij}$ are independent if and saly if $P_{(x_1, x_2)} = P_1 \otimes P_2$.

Marginal distribution

Coussider the joint distribution $\begin{array}{cc} P & \partial P & \partial P \end{array}$ $X = (x_{n_1} x_2)$. The marginal distribution of X wrt x_1 is the original distribution of X_A on $(\mathbb{L}_A, \mathbb{L}_A)$, namely $P_{X_{1}}$. Similarly for $P_{X_{2}}$.

Example in He dírink GR:

\n

\n $\begin{array}{r}\n Y_1 \\ Y_2 \\ Y_3\n \end{array}$ \n	\n $\begin{array}{r}\n Y_1 \\ Y_2 \\ Y_3\n \end{array}$ \n		
\n $\begin{array}{r}\n Y_2 \\ Y_3\n \end{array}$ \n	\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n	\n $\begin{array}{r}\n Y_2 \\ Y_3\n \end{array}$ \n	\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n	\n $\begin{array}{r}\n Y_2 \\ Y_3\n \end{array}$ \n	\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n	
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n	\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n		
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n			
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n			
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n			
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n			
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n			
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n			
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n			
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$ \n			
\n $\begin{array}{r}\n Y_1 \\ Y_2\n \end{array}$			

marginal Wrt X

Marginal distributions in case of densities x_i α : (α, ψ, ρ) \rightarrow $(\alpha, \beta(\mathbf{R}))$, $\qquad \qquad$ \qquad \qquad Heat the joint distribution of Z has a density of our dZ then the following statements hold:

(A) Both X and Y large during his on
$$
(R, d(R))
$$
 given by,
\n
$$
\int_{X}^{R}(x) = \int_{-\infty}^{\infty} f(x,y) dy^{\text{sum by } Y}
$$
\n
$$
\int_{-\infty}^{\infty} f(x,y) dy^{\text{sum by } Y}
$$
\n
$$
\int_{-\infty}^{\infty} f(x,y) dx
$$
\n
$$
\int_{-\infty}^{\infty} f(x,y) dx
$$
\n
$$
\int_{-\infty}^{\infty} f(x,y) dx = \int_{-\infty}^{\infty} f(x,y) dx
$$

Mixed cafes

For example, counider X a continuous rv with almosty and 4 a discrete rv. S_{α} , $x = incount \in \mathbb{R}$

$$
\int_{\alpha}^{\alpha} f(x) \, dx \quad \text{where} \quad \alpha \in \mathbb{R}^n
$$

Specificate: marginal of of mulhvoriah normal distribu
\n2 dim Council a 2-dim normal rv
$$
X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
$$
 with *mean*
\n $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ GB² and cov. $\sum = \begin{pmatrix} 6i^2 & 0i_2 \\ 6i_4 & 6i^2 \end{pmatrix}$.
\nThen the unprincipal depthri but the of X with X₁ is again

$$
X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^{n}
$$

What to look of the unospital of X not X,
\n
$$
y = \begin{pmatrix} \mu_A \\ \vdots \\ \mu_B \end{pmatrix}
$$
 mean $\mu = \begin{pmatrix} \mu_A \\ \vdots \\ \mu_B \end{pmatrix} + \mu = \begin{pmatrix} \mu_B \\ \vdots \\ \mu_B \end{pmatrix}$
\n Σ
\n

Now the marginal of X art \tilde{X} is a normal distr. on \mathbb{R}^k with mean $\stackrel{\sim}{p}$ and Cov. $\stackrel{\sim}{2}_{AA}$

Couditional distributions

Direct car:	
Kaw would through probability:	$P(A B)$
defined for width A, B, C, and P(C) > 0.	
Let X, Y: (S, A, P) $\rightarrow R$ be directly in $Y \in R$ such that	
$P(Y \rightarrow Y) > 0$. Then we can define the condition P probably measure P : $A \mapsto P(X \in A Y \rightarrow Y)$.	
Hint: or a probability measure.	

For general no Hint in multiplying 60.000 in 10.0000
\n
$$
\sim
$$
 "regular couldi through probability" 10.000 in 10.0000

coudihibuhbuhqih.es Assume 2 x 4 has ^a joint density f ¹¹²² 7112 and marginal densities ^f fy IR ⁴² then the function ft ¹⁴ ⁴ Ct f fu cyl is there also ^a density on ¹¹² called the si of Xg y

Example: normal distribution
$p = \begin{pmatrix} x_1 \\ y_1 \\ y_2 \end{pmatrix} \begin{pmatrix} x_2 \\ y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} z_{21} & z_{22} \\ z_{21} & z_{22} \end{pmatrix}$
$4x = \begin{pmatrix} x_1 \\ y_2 \\ y_1 \end{pmatrix} \approx b \begin{pmatrix} p_1 \sum x_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} z_{21} & z_{22} \\ z_{21} & z_{22} \end{pmatrix}$
$6x = \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} = \omega x + x^{\mu} = \begin{pmatrix} x_{\mu 11} \\ x_{\mu 1} \end{pmatrix} = \begin{pmatrix} 0 & x^{\mu_1 \mu_2} \\ 0 & x^{\mu_2 \mu_3} \end{pmatrix}$
$P_{\begin{pmatrix} x_1 \\ y_2 \end{pmatrix} = \omega} = \sum_{n=1}^{L} \sum_{n=1}^{L} \sum_{n=2}^{L} \sum_{n=2}^{L} \sum_{n=1}^{L} \sum_{n=2}^{L} \sum_{n=1}^{L} \sum_{n=2}^{L} \sum_{n=1}^{L} \sum_{n=$

 $X_1 = \Lambda$

Conditional expectation

Def	(diserk car)	X, Y: (2, 4, P) \rightarrow R	
assume	X halus	family	(countably) <i>many values</i>
$x_1, ..., x_n \in R$, Y holus	family	(countably) <i>many</i>	
$x_1, ..., x_n \in R$, Y holus	family	(countably) <i>many</i>	
$x_1, ..., x_n \in R$, <i>always</i>	similar by <i>probability</i>		
$x_2, ..., x_n \in R$, <i>values</i>	similar by <i>probability</i>		
$x_3, ..., x_n \in R$, <i>values</i>	similar by <i>probability</i>		
$x_4, ..., x_n \in R$, <i>values</i>	similar by <i>probability</i>		
$x_5, ..., x_n \in R$	similar by <i>initial</i>		

$$
Example: \t{two dire, X = first our, Y = record due, independent\n
$$
E(sum | X = A) = \sum_{i=1}^{12} i \cdot P(sum = i | X = A)
$$
\n
$$
= \sum_{k=1}^{6} (1+k) \cdot P(Y=k | X = A)
$$
\n
$$
= \sum_{k=1}^{6} (1+k) P(Y=k | X = A)
$$
$$

So far we defined $E(Y | X_i x_i)$, but ofter we want to $arctan \theta$ the function $E(Y(X)|_{C^{2}})$. This is a ru $E(Y|X)$: (S, d, r) is (R, B) . Leads to the following

Def (discrit case) X, 4 as before. Then the conditional expectation in defined as follows:

$$
E(Y|X) := f(X) \text{ with}
$$
\n
$$
f(x) = \begin{cases} E(Y|X=x) & \text{if } P(X=x) > 0 \\ \text{as binary } x \text{ or } 0 & \text{otherwise} \end{cases}
$$

$$
\bigwedge_{i=1}^n G(Y|X) \quad \text{if} \quad \text{only defined} \quad \alpha \cdot S.
$$

Now we want to have *the user quiral cal*.

\nSuch:

\n
$$
X
$$
\n
$$
Guthu
$$
\n
$$
V = \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{2\pi}
$$

Let $($ Condition ω (x) $\vec{f}_{0,1} P$)	If $X \in L_{n}(A, \vec{F}_{0,1} P)$
Countall $IV \times (R : (R, \vec{F}_{0,1} P) \rightarrow R \rightarrow X \in L_{n}(A, \vec{F}_{0,1} P)$	
Let \vec{f} be a not-6-talars of \vec{f}_{0} . (Multiplying \vec{f}_{0} with k the ω with k and k is a ω with k and ω is a ω with ω and ω is a ω with <math< td=""></math<>	

$$
\frac{E_{x\alpha\omega\gamma}(t)}{X=Y}. \text{ Thus } E(X|Y) = X
$$
 (a.s.)
• $X \perp Y$. $E(X|Y) = E(X)$ (a.s.

$$
\frac{G_{\alpha} \times \partial f}{\partial x} = \frac{1}{2} \sinh du \sinh by
$$
\n
$$
\chi_{1} \gtrsim 3 \Rightarrow \mathbb{R} \quad \text{have} \quad \frac{1}{2} \sinh du \sinh \frac{1}{2} \cos(2).
$$
\n
$$
\text{Let } g: \mathbb{R} \rightarrow \mathbb{R} \quad \text{bounded} \quad \text{at} \quad \mathbb{R}: g(\frac{2}{3}). \quad \text{Assume we}
$$
\n
$$
\text{with} \quad \text{to } \text{coupling} \quad \mathbb{E} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right).
$$

Recall X har density $f_X^{(x)} = \int f(x, \epsilon) dx$.

Me couditional descritz af & jim X=x is

$$
f_{\chi_{2x}}(z) = \frac{f(x_{12})}{f_{\chi}(x)}
$$
 $(if f_{\chi}(x) * \theta)$

Now couride $\bigwedge_{k=0}^{n} C(k)$ $\bigwedge_{k=0}^{n} C(k)$ $\bigwedge_{k=0}^{n} C(k)$ $d(k)$ $d(k)$ $d(k)$ $E(Y|X) - L(X)$.