Vector spaces

•
$$u \in \mathbb{Z}_{i}$$
 Courisks $\mathbb{Z}_{n} := \{0, 1, ..., u-1\}$
 $a \neq_{n} b := (a + b) \mod n$
 $a \neq_{n} b := (a \cdot b) \mod n$
Then $(\mathbb{Z}_{n}, \neq_{n}, \cdot_{n})$ is a field if and only if
 n is prime.

Elements of V are called vectors, elements of Fare called scalars.

$$: \mathbb{R} \times \mathbb{R}^{2} \to \mathbb{R}^{2}, \quad (\lambda \cdot f) (x) := \lambda \cdot (f(x))$$

Hen $(\mathbb{R}^{2}, +, \cdot)$ is a real vector space.
• $\mathcal{L}(X) := \{f: X \to \mathbb{R}\} f$ is continuous j
• $\mathcal{L}^{r}([a_{1}b]]) = \{f: [a_{1}b] \to \mathbb{R} \mid f$ is r times cont.
differentiable j

Out let V be a vector space, U C V non-empty set.
We call le a subspace of V it is closed under linear
combinations:
$$\forall I, N \in F \forall u, v \in U$$
. And $p \cdot v \in U$
Examples: $. e(X)$ is a subspace of \mathbb{R}^X .
• Me set S of symmetric metrices of rise used
is a subspace of $\mathbb{R}^{n\times n}$.

Def A pet of vectors
$$v_{1}, ..., v_{n}$$
 is called linearly independent
if the following holds:
 $\sum_{i=1}^{n} \lambda_{i} v_{i} = 0 \implies \lambda_{1} = ... = \lambda_{n} = 0$.
 $i = 1$

Examples: The rectars
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} \in \mathbb{R}$$
 are lin. indep.
The functions sinces and cos (*) & 12 are lin. ind.
They set of ded rectors in \mathbb{R}^d is lin. dependent.

Basis and dimension

$$\frac{\mathcal{E}_{\mathcal{K}} \alpha_{uv}}{\mathcal{E}_{\mathcal{K}}} \left(\begin{array}{c} \mathcal{E}_{\mathcal{K}} \\ \mathcal{E}_{\mathcal{K} \\ \mathcal{E}_{\mathcal{K}} \\ \mathcal{E}_{\mathcal{K}} \\$$

Prof (Thetch) Let War-, was be a bacis of V. Conside he sik

Def Arrane that we have
$$U_1$$
, U_2 subspaces of V.
The run of the two spaces is defined as
 $U_1 + U_2 := \int U_1 + U_2 | U_1 \in U_1, U_2 \in U_2$
The run is called a direct run, if each element
in the run can be written in exactly our ways.
Notation: $U_1 \oplus U_2$

$$\frac{P_{roof}}{(ruthch)} \quad Let Hurst [u_{1}..., u_{n}] \quad basis of U.$$

$$Extend it to a basis of V, say the routhy tet$$
is
$$\frac{[u_{1}..., u_{n}, v_{1}..., v_{m}]}{NU} \quad Define$$

$$NU \quad NW$$

Linear Mappings

Dif Let U, V VS on F. A mapping T: U=>V is
called linear if V u, uz & U, V & E F

$$f(u,u_2) = f(u_1) + f(u_2)$$

 $f(\lambda u_4) = \lambda f(u_4)$
the reli of all linear mappings from U=1 V is alcusted $\mathcal{L}(U, V)$.
If U=V, then are write $\mathcal{L}(U)$.
Brownyles: T: $\mathcal{L}[a_1b] \rightarrow \mathbb{R}$, $f \mapsto \int_{a}^{b} f(x) dx$ (unhymetric)
 $0: \mathcal{L}^{\infty}[a_1b] \rightarrow \mathcal{L}^{\infty}[a_1b]$, $f \mapsto f'(D)$ form highligh)
 $\mathcal{D}ef$. T $e \mathcal{L}(U_1V)$. Then here if f (u_1U space of T)
is defined as
her (T) := null(T) := {u \in U | Tu = 0}

Def The range of
$$T$$
 (inner of T) is defined at
range $(T) := \lim (T) := \sum Tu | u \in U_j^2$

$$\frac{Prop}{r}$$
. The range is always a subspace of V.
• T is surjective iff range $(T) = V$.

$$\frac{\operatorname{Feh}}{\operatorname{T}^{-n}(v')} := \left\{ u \in \mathcal{U} \mid \operatorname{T}^{-n}(v') := \left\{ u \in \mathcal{U} \mid \operatorname{T}^{-n}(v') := \left\{ u \in \mathcal{U} \mid \operatorname{T}^{-n}(v') \right\} \right\}$$

Theorem: Let V be finith-dim, W any VS, T
$$\in \mathbb{Z}(V, w)$$
.
Let u_{1}, \dots, u_{n} be a basis of her $(T) \subset V$
Let w_{1}, \dots, w_{m} be a basis of range $(T) \subset W$.
Then u_{1}, \dots, u_{n} , $T^{-n}(w_{n}), \dots, T^{-n}(w_{m}) \subset V$ form
a basis of V.
In publicular, dim $(V) = \dim(hr(T)) + \dim(range(T))$.
Proof Denote $T^{-1}(w_{n}) = : \exists_{1}, \dots, T^{-1}(w_{m}) = \exists_{m}$.

$$V = \frac{V}{u_{1}} + \frac{V}{u_{2}} + \frac{V}{u_{2}$$

$$= T\left(v - \left(l_{1} \approx_{1} \qquad l_{m} \approx_{m}\right)\right)$$

$$\in her(T)$$

=)
$$\exists \mu_{1},...,\mu_{n}$$
 s.t. $v = (\lambda_{1} t_{1} t_{...} + \lambda_{m} t_{m}) = \mu_{1} u_{1} t_{...} + \mu_{n} u_{n}$
=) $v = \lambda_{1} t_{1} t_{-1} + \lambda_{m} t_{m} t_{1} + \dots + \mu_{n} u_{n}$

Sh p 2 :
$$u_{1,-1} u_{n+1} \overline{z_{1}} \dots \overline{z_{n}} w_{n}$$
 at lin. indep.
A show that $\mu u_{n} \overline{z_{1}} \dots \overline{z_{n}} \mu_{n} u_{n} \overline{z_{1}} \overline{z_{1}} \dots \overline{z_{n}} \overline{z_{n}} = 0$
 $\lambda_{1} w_{n} \overline{z_{1}} \dots \overline{z_{n}} \lambda_{m} w_{m} = \lambda_{1} \Gamma(\overline{z_{1}}) \overline{z_{n}} + \lambda_{m} \Gamma(\overline{z_{m}})$
 $= \lambda_{1} \Gamma(\overline{z_{1}}) \overline{z_{n+1}} \lambda_{m} \Gamma(\overline{z_{m}}) + \mu_{n} \Gamma(u_{n}) + \mu_{n} \Gamma(u_{n})$
 $= \Gamma(\lambda_{1} \overline{z_{1}} - \dots \overline{z_{m}} + \mu_{n} u_{n} \overline{z_{n-1}} + \mu_{n} u_{n}) = 0$
 $= O b_{T} \otimes$

$$=) \lambda_1 w_1 \tau \dots \tau \lambda_m w_m = 0 = \lambda_1 = \dots = \lambda_m = 0$$

$$w_{q, \dots, w_m}$$

$$w_{q, \dots, w_m}$$

$$w_{q, \dots, w_m}$$

=)
$$p_{1} n_{1} + \dots + p_{n} n_{n} = 0$$
 by \mathfrak{B}
=) $p_{1} = \dots = p_{n} = 0$ becomes $a_{1} \dots a_{n}$ basis.

-	
r.	
	$D \ge 0$
	11210

(!) Down not lest din 00-dim spaces!

Matrices and linear maps

$$U_{a}$$
 taking:
 M_{a} to C .
 M_{a} to C

•
$$V = \lambda_{\eta} v_{\eta} + \dots + \lambda_{n} v_{n}$$

 $\Gamma(v) = \Gamma \left(\lambda_{\eta} v_{\eta} + \dots + \lambda_{n} v_{n} \right)$
 $= \lambda_{\eta} \Gamma(v_{\eta}) + \dots + \lambda_{n} \Gamma(v_{n})$

$$\Gamma(v_j) = \alpha_j \omega_1 + \dots + \alpha_j \omega_m$$

• We now shark these coefficients in a matrix:

m rows,

$$(a_{nq}, \dots, a_{nj}, \dots, a_{nu})$$
 matrix of mapping T
 $(a_{nq}, \dots, a_{nj}, \dots, a_{nu})$ = with respect to
 $(a_{nq}, \dots, a_{nj}, \dots, a_{nu})$ = with respect to
 $(a_{nq}, \dots, a_{nj}, \dots, a_{nu})$ = $(a_{nj}, \dots, a_{nj}, \dots, a_{n$

• For
$$V = \lambda_{\eta} v_{\eta} + \dots + \lambda_{u} v_{u}$$
 we have that
 $T(v) = H(T) \begin{pmatrix} \lambda_{\eta} \\ \vdots \\ \lambda_{\eta} \end{pmatrix}$ when $v_{\eta, \dots, \eta} v_{u}$ is Tapirox V
image of V
under T matrix-vector
product

•
$$T: U \rightarrow V_{1} S: V \rightarrow W$$
 linear , Hun
 $M(S \circ T) = M(S) \cdot H(CT)$
Def Given a matrix $A = (a_{ij}) \in F^{Man}$, He
browsyope matrix is give at
 $(A^{t})_{kj} = A_{jk}$
 $A^{-}(\begin{array}{c} 1 & 2 \\ 4 & 5 \\ 6 \end{array}), A^{t} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$
Notation: A^{t} , A^{1}
 $If F = C_{1}$ Hun He conjugate transpose matrix is
defined at
 $(A^{*})_{ij} = \overline{a_{ji}}$
 $K = a + ib$
 \overline{Icop} Assume F is R. Hun:

$$\langle x, A_{\gamma} \rangle_{\mathbb{R}^{n}} = \langle A^{\uparrow} x, \gamma \rangle_{\mathbb{R}^{n}}$$

Arrune E = C. Then:

$$\langle x, Ay \rangle = \langle A^* x, y \rangle_{C_n}$$

L

Invertible mys and matrices
Def. TG
$$\forall (v, W)$$
 is called invertible if twee earths
a linew my $S \in \forall (W, V)$ such that
 $S \circ T = Jd_V$ and $T \cdot S = Id_W$
The way S is called the invex of T , denoted by T^{-1} .
Run have mays are unique.
Proof "=> " havefulles in invertible iff it is inj. and surj.
Proof "=> " havefulle => inj.object:
 $suppose T(w) \in T(v)$. Then $u = T^{-1}(T(u))$
 $= T^{-1}(Tv) = V =>$ injedice
lavefulle => ranjective: $w \in W$. Then
 $w = T(T^{-1}(w)) => w \in range + T$
 $\Rightarrow ranjecture.$
 $V = v = v = v = v = v = v$.
Let $w \in W$. Then $T(v) = v$.
 $z = (T \circ S)(Tv) = Jd \circ Tv = Tv.$
 $=> (T \circ T)v = v => S \circ T = Id$

Linewity:
$$T(Sw_1 + Sw_2) = TSw_1 + TSw_2 =$$

= $W_1 + W_2$.
=) $T w_{0} + Sw_1 + Sw_2 + W_1 + W_2$
=) $S(w_1 + W_2) + W_1 + W_2$
=) $S(w_1 + W_2) = Sw_1 + Sw_2$
Similarly for scalar mult.

Def A square watrix
$$A \in F^{n\times n}$$
 is involved if there exists
a square matrix $B \in F^{n\times n}$ such that
 $A \cdot B = S \cdot A = Jd = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

The matrix B is called the inner matrix, and is deashed by A⁻¹.

Prop The invorme matrix represents the invex of the corr. lin.
upp, that is:
$$T:V \rightarrow V$$

 $M(T^{-1}) = (M(T))^{-1}$
matrix of (invex mp) invertantice (of the original matrix)
(y particular, a matrix is invertible iff the corr. my

is invertible.

Remarks :

- . The invoror winh's does ust always wint.
- $(A^{-A})^{-A} = A_{-A} (A \cdot g)^{-A} = g^{-A} \cdot A^{-A}$
- A^{t} invertible C=>A invertible, $(A^{t})^{-A} = (A^{-1})^{t}$
- · A in & F "" invotible <> rouch (A) = n
- The set of all invehible matrices is ralled general linear groups
 GL(u, F) = {A & F^{MAU} | A involible}

Counider the identity upping $J: V \rightarrow V$, $x \mapsto x$. Assume we fix a basis of V (both in source and hoget space), then the corr. making looks as follows: $M(J, B, B) = \begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix}$

Now coupide
$$U = \{a_{1}, ..., a_{u}\}$$
 and $\mathcal{B} = \{b_{1}, ..., b_{u}\}$ both
bases on V . How does the matrix of the id. myping
 $J : (V, U) \rightarrow (V, \mathcal{B})$ look like?

Bround & is basis, we can write each of the rectors in the

$$\alpha_n = \left[t_{1n} b_n + t_{21} b_2 + \dots + t_{nn} b_n \right]$$

$$\alpha_2 = \dots$$

Now we form the corr. matrix T

$$T = \begin{pmatrix} t_{in} & \cdots & t_{in} \\ \vdots & \vdots \\ t_{in} & \cdots & t_{in} \end{pmatrix}$$

This watrix represents the lolewhilty:
• In the basis of the first basis rechs on the the representation
$$\begin{pmatrix} A \\ 0 \\ 0 \end{pmatrix}$$
.
• $a_1 = 1 \cdot a_1 + 0 \cdot a_2 + 0 \cdot a_3 - t \cdot a_n$
• $T \begin{pmatrix} A \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \pm a_1 \\ \pm a_2 \\ \vdots \\ \pm a_n \end{pmatrix}$ this rectire gives us Ta_n is expressed in basis B

$$\cdot T \alpha_1 = \alpha_1.$$

$$\frac{Prop}{A} = M(Jd, Uk, 8), \text{ and } A^{-1} = M(Jd, B, J).$$
Let $T: V \rightarrow V$ linear, and $X:= M(T, Uk, V)$. Then
$$\frac{Y:= A \cdot X \cdot A^{-1}}{Y:= W(T, B, B)}.$$

$$Jd map.$$

$$(V, U) \leq -\frac{1}{matrix A^{n}} (V, B)$$

$$m_{ppinj} T \int watrix X \qquad m_{p}. T \int watrix Y$$

$$(V, U) = -\frac{1}{n} d map \qquad (V, B)$$

$$matrix A$$

$$\frac{P_{rop}}{T \in \mathcal{Z}(V, W)}. \text{ Then rank } (M(T)) = dim (range (T)).$$

<u>Prop</u> Two equivalence clarses [a] and [b] are wither indentical or designing.

Define the quotient "space" as

$$V/W$$
 : (=> { [v] | v \in V}
 $[v], [u] \in VW$
 $[v] + [u] : (=> [v + u]$
 $\lambda [v] : (=> [\lambda v]$
These operations are well-defined:

$$u' \sim u$$

$$[v] + [u] \stackrel{?}{=} [v'] + [u']$$

$$v \sim v' \iff J w \in W \quad v \sim v' = w$$

$$u \sim u' \iff J & \& W: u - u' = w$$

$$[v] + [u] = [v + u] \quad \Im \stackrel{?}{=} (v + u) \quad v \quad (v' + u')$$

$$[v'] + [u'] = [v' + u'] \quad (v + u) \quad (v' + u')$$

$$= (v - v') + (u - u') \quad \in W$$

$$\frac{Prop}{Prop}: Coupride g: V \rightarrow V/W, V \mapsto [V]. Then:
• g is linear
• her (g) = W
• range (g) = V/W
• range (g) = V/W
• tf V has finish dim, then dim $V_W = dim V - dim W.$$$

The determinant

• The determinant of an linear wapping does not depend on the basis.

• det
$$(c \cdot A) = c^n det(A)$$

• det $(A \cdot B) = (det A) \cdot (def B)$

$$\cdot det (A^{t}) = def(A)$$

• det
$$(A^{-1}) = 1/det(A)$$
 (if A is investible)

• det $(A+B) \neq det(A) + det(B)$

• If A is upper triangular, that is

$$A = \begin{pmatrix} \lambda_{1} & * \\ 0 & \lambda_{N} \end{pmatrix}$$

Then def $A = \lambda_1 \cdot \ldots \cdot \lambda_n$.

Explicit formulas for the determinant:
Leibnite formula: Denoh by Sh the set of all permutations
of
$$\{\Lambda_{1,...,n}\}$$
. Then
 $det A = \sum_{\substack{i \ sign}(5)} \alpha \cdots \alpha$
all pointations $\sigma \in S_{n}$ sign of a $\Lambda \in \alpha$ $n \in \alpha$.

$$\frac{Special \alpha kg}{n=1} = \frac{1}{\alpha kg} = \frac{1}{\alpha$$

Consider au une matrix A with columns $(a_1 | a_2 | \dots | a_n) = A$. Consider he unit cube $U = [c_1 e_1 + \dots + c_n e_n | 0 \leq c_i \leq a_j]$

 $\mathcal{U} \longrightarrow \mathcal{P} := \left\{ \prod_{i=1}^{n} c_{i} \alpha_{i} + \cdots + c_{i} \alpha_{i} \right\} \quad o \in c_{i} \in \mathcal{A} \right\} \text{ parakelotope}.$

Then det (A) gives us the (signed) volume of P.

Proposition:
$$Q \in \mathbb{R}^{n}$$
 open respit, $\sigma: \mathcal{L} \to \mathbb{R}^{n}$ differentiable (
 $f: \sigma(\mathcal{R}) \to \mathbb{R}$. Then:
 $\int f(y) dy = \int f(\sigma(x)) |det(\sigma'(x))| dx$
 $\sigma(\mathcal{R})$ volume x volume element

$$6'(k) = \begin{pmatrix} \frac{\partial 6_1}{\partial x_1} & \cdots & \frac{\partial \sigma_n}{\partial x_1} \\ \vdots & & \vdots \\ \frac{\partial \sigma_n}{\partial x_1} & \cdots & \frac{\partial \sigma_n}{\partial x_n} \end{pmatrix}$$

 $vol \sigma(B) \approx vol ((\sigma'(x)) \cdot J)$ $\approx [aut (\sigma'(x))) \cdot vol(G)$

Sushhuh'an: y = 6(x)

$$f(\gamma) \cdot v_0 \left(\sigma(\theta) \right) \propto f(\sigma(\kappa)) \cdot \left[du + (\sigma'(\kappa)) \right] \cdot v_0 \left(\theta \right)$$

$$d\gamma \qquad d\kappa$$

Sfey, dy x Sf (6(x)) [det o'(x)] dx

Eigun values

Def Let
$$T: V \rightarrow V$$
. A sealor $\Lambda \in F$ is called an
eigenvalue if there exists a $v \in V$, $v \neq 0$,
such that $Tv = \Lambda \cdot v$. A vector $v \neq D$ with this
propulty is called as eigenvector corresponding to
eigenvalue λ . The set of all eigenvectors of Λ is
called the eigenopace $E(\Lambda, T) = her(T - \Lambda I)$.

Cemarks
· Eignvalue/eignvector reactions a "streching"

$$V \mapsto JV$$

 $Tv = Jv$
 $Tv = Jv = 0$
 $Tv = Jv = 0$
 $Tv = Jv = 0$
 $(T - JIv = 0)$
 $(T - JIv = 0)$

٠

• If
$$\lambda$$
 is an eigenvalue, it has many eigenvectors!
For example, if v is eigenvector, then also
 $a \cdot v$ ($a \in K$) is an eigenvector!
 $T(a \cdot v) = a \cdot T(v) = a \cdot \lambda \cdot v = \lambda (a \cdot v)$

$$\frac{|u|huihish:}{huihish:} A_{n} A_{2} two eigenvolues, A_{n} \neq A_{2}$$
Assume v_{1} , v_{2} an eigenvectors that are not
lin. independent: $v_{2} = c \cdot v_{1}$

$$Tv_{1} = A_{1} v_{1}$$

$$Tv_{2} = A_{2} v_{2} = A_{2} (c \cdot v_{1}) + A_{1} \neq A_{2}$$

$$\overline{Tv_{2}} = T(c \cdot v_{1}) = c \cdot Tv_{1} + c \cdot A_{1} v_{1}$$

· Gignvectors that corr. to the same liquivalue do not need to be independent

They can be hin independent:
Easy example:
$$A = I$$
, then every vechor
v is an eigenvechor of eigenvolue 1.
 $I \cdot v = 1 \cdot v$

· The eigenspace E(I, T) is always a div. subspace of V.

Prop For finik-din VS, the following statements are equivalent:
(i)
$$\lambda$$
 eign value of T
(ii) $T - \lambda E$ not injective
(iii) $T - \lambda E$ not surjective
(iv) not bijective.

Prop
$$\sum_{i \neq j \neq 0} V$$
 is finite-dim, $T \in \mathbb{Z}(V)$, and $\mathbb{A}_{1,\dots,j}$ due
one distinct eigenvalues of T . Then a sum of eigenspaces
 $E(\mathbb{A}_{1},T) \notin E(\mathbb{A}_{2},T) \notin \dots \notin E(\mathbb{A}_{m,j},T)$
is a direct sum. In particular
drive $(E(\mathbb{A}_{1},T)) \notin \dots \iff dim(E(\mathbb{A}_{m,j},T)) \iff dim V$

<u>Theorem</u>: Every operator T: V-> V on a finite-dim, complex VS V has at least one eigenvalue.

Proof let
$$n = \dim V$$
. Choose a vector $v \in V$, $v \neq 0$. Then the set v , Tv , T^2v , ..., T^nv

her to be lineally dependent (it counists of ut 1 vectors in an u-dim space). Find coefficients ad, and, a such that

> h and in com be differt

$$a_0 V \neq a_1 T v \neq \dots \neq a_0 T^n v = 0$$

Now coupiers a polynomial on C with these coefficients:

$$p(z) := \alpha_0 + \alpha_1 \cdot z + \dots + \alpha_n z^n$$

Over C, we can factorie it:

$$p(z) = c.(z-J_1)(z-J_2)...(z-J_m)$$

Hence,
$$O = a_0 v + a_1 T v + \dots + a_n T^n =$$

$$= \left(\begin{array}{c} a_0 + a_1 T + \dots + a_n T^n \end{array} \right) v$$

$$C \cdot (T - \lambda_1 L) (T - \lambda_2 L) \dots (T - \lambda_m L)$$

$$= C (T - \lambda_1 L) (T - \lambda_2 L) \dots (T - \lambda_m L) \cdot v$$

$$\Rightarrow v \in her (hij symmetr)$$

$$\Rightarrow v \in her (hij symmetr)$$

$$\Rightarrow Hun must with i \in fo, \dots, m) such that CT - \lambda_i L with injective
$$= \lambda_i \text{ ir an eigenvalue of } T = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$$$$

Ŋ

Charachristic polynomial

A usy - matrie $Av = \lambda v$ Kotivahien : v # 0 (-> (A-1E) v = 0 (G> V E her (A-XI) rauk(A-JE) < n(=) $det (\Lambda - 1C) = 0$ (=) The dwaracteristic polynomial of an neu-matrix A Def is defined at $P_A(t) := det(A - t \cdot I)$ Example: $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ det $(A - t \cdot L) = det \left(\begin{pmatrix} a_{11} - a_{12} \\ a_{21} & a_{22} \end{pmatrix} - t \cdot \begin{pmatrix} A & O \\ O & J \end{pmatrix} \right)$ $= det \begin{pmatrix} a_{11} - t & a_{12} \\ a_{21} & a_{22} - t \end{pmatrix}$ $= (a_{11} - t)(a_{22} - t) - a_{12} \cdot a_{21}$ $= t^{2} + t \left(-q_{11} - q_{22}\right) - q_{12} \cdot a_{11} + a_{11} \cdot q_{22}$

Obrevations

=
$$def(u) \cdot def(A - t \cdot I) \cdot def(u^{-1})$$

= $def(A - t I)$

• Over C, the char. poly. always has a roots, so the matrix has "a cipurvalues" (not nec. distinct).

• Let
$$A$$
 be invertible, A eig of A . Then
 A/A is an eig. of A^{-1} .

Def For an operator
$$A$$
 with eigenvalue A , we define its
geometric multiplicity as the dimension of the
corr. eigenspace $E(A, A)$.
The alphornic multiplicity is the multiplicity of the
root A in the chose poly.

In general, the two notions do not coincide.

Trace of a wetrig

Def the brace of a square matrix $A \in F^{uxu}$ is the sum of its diagonal elements: $Er(A) = \sum_{i=1}^{N} a_{ii}$.

Remarks :

•
$$\operatorname{tr}: \mathbb{R}^{u \times n} \to \mathbb{R}$$
 is a linear operator
the particular, $\operatorname{tr}(A + B) = \operatorname{tr}(A) + \operatorname{tr}(B)$.
• $\operatorname{tr}(A \cdot B) = \operatorname{tr}(B \cdot A)$
 $\angle | \operatorname{tr}(A \cdot B) \neq \operatorname{tr}(A) \cdot \operatorname{tr}(B)$

- trace does not depend on the bacis:
 Let TGZ(V), and U and W two bares of V. Then:
 tr (H(T,U)) = tr (M(T, W)).
- The trace of an operator equals the sum of its complex eigenvalues, counted according to multiplicity:

$$\widetilde{A} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{n} \end{pmatrix} \quad \text{wrt some backs } V_{1,\dots,1} V_{n}$$

=) $tr(\widetilde{A}) = \sum_{i=1}^{n} \lambda_{i}$

Curious little facts: Over
$$C$$
, or can always
find basis of eigenvectors, : $A \in \mathbb{R}^{h \times n}$, over C
 $S = \left(\begin{array}{c} I \\ A \end{array}\right)$, $A \in \mathbb{R}^{h \times n}$, $A \in \mathbb{R}^{h \times n}$, $A \in \mathbb{C}$
 $A \in \left(\begin{array}{c} I \\ A \end{array}\right)$, $A \in \mathbb{C}$
 $tr(A) = \sum_{i=1}^{n} \sum_{i=1}^{n} aii = \frac{tr(A)}{eR}$
 $indep.$
of base

trace equals the negative of the coefficient in front of tⁿ⁻¹
 in the choir polynomial
 if A(E) = tⁿ + (an-1)tⁿ⁻¹

Example: Consider a rotation matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

· A does not have any real eight values.

- . The trace is give as 2.cos O.
- Here chose poly. of A is $p(f) = de + (A - tE) = det \begin{pmatrix} (\cos \theta) - t & -\sin \theta \\ \sin \theta & (\cos \theta) - t \end{pmatrix}$ $= (\cos \theta - t)^{2} + \sin^{2} \theta$ $= t^{2} - 2\cos \theta + t + \frac{\cos^{2} \theta + \sin^{2} \theta}{-1}$ $= t^{2} - (2\cos \theta) + t + 1 \qquad 4\cos^{2} \theta - 4$ $= t^{2} - (2\cos \theta) + t + 1 \qquad 4\cos^{2} \theta - 4$ $= 4(-\sin \theta)$ $= 4(-\sin \theta)$ $A_{1/2} = \frac{2\cos \theta + 1}{2} \sqrt{2} \cos^{2} \theta - 4$

$$= \cos \theta \pm \dot{c} \cdot \sin \theta$$

- The matrix has a algorial representation $\begin{pmatrix} I_1 & 0 \\ 0 & I_2 \end{pmatrix}$ $fr \begin{pmatrix} I_1 & 0 \\ 0 & I_2 \end{pmatrix} = \cos \theta + i \sin \theta + \cos \theta - i \sin \theta$ $= 2 \cos \theta$

Diagonaliza hien

$$\frac{\partial e_{f}}{\partial h} = \begin{pmatrix} \lambda_{n} & 0 \\ 0 & \lambda_{n} \end{pmatrix}$$

Prop V finite dim, A & Z(V). Then the following stateacts are equivalent: (i) A is diagonalizable. (ii) • The char. pol. pA can be decomposed into linear factors

• The algebraic multiplicity of the roots of ph ore equal to ke peometric multiplicities.

Can't if
$$A_1, \dots, A_k$$
 are the pairwise distinct eigenvalues
of A_1 . Then
 $V = eig(A_1, A_1) \oplus \dots \oplus eig(A_1, A_{k_k})$.

A matrix is called upper triangular, if it has
the form
$$\begin{pmatrix} I_n \\ 0 \\ \ddots \\ I_n \end{pmatrix}$$

$$\frac{Prop}{Hen} \quad T \in \mathcal{J}(V), \quad \mathcal{B} = \{v_{1}, v_{2} \cdots , v_{n}\} \quad a \quad bah'r.$$

$$Hen \quad equivalent:$$

$$(a) \quad \mathcal{M}(T_{1}, \mathcal{B}) \quad is \quad apper \quad triangular.$$

$$(b) \quad T v_{j} \quad \mathcal{E} \quad span \begin{cases} v_{1}, \cdots, v_{j} \end{cases} \quad \begin{array}{c} \mathcal{B}_{j} = 1, \cdots, u \\ \mathcal{B}_{j} = 1, \cdots, u \end{cases}$$

$$T v_{1} \quad = \begin{pmatrix} \lambda_{1} & a_{n2} & a_{n3} \\ \lambda_{2} & a_{n3} \\ \mathcal{O} & \lambda_{3} \end{pmatrix} \begin{pmatrix} n \\ 0 \\ \partial \end{pmatrix} = \begin{pmatrix} \lambda_{1} \\ 0 \\ \partial \end{pmatrix} = \lambda_{n} \cdot v_{1}$$

$$T v_{2} \quad = \begin{pmatrix} \lambda_{n} & a_{n2} & a_{n3} \\ \lambda_{2} & a_{23} \\ \mathcal{O} & \lambda_{3} \end{pmatrix} \begin{pmatrix} 0 \\ \lambda_{j} \\ \partial \end{pmatrix} = \begin{pmatrix} a_{n2} \\ \lambda_{2} \\ \partial \end{pmatrix} = a_{n2} \begin{pmatrix} n \\ 0 \\ \partial \end{pmatrix} + \lambda_{2} \begin{pmatrix} n \\ \partial \\ \partial \end{pmatrix}$$

$$\in \quad Span \quad (v_{1}, v_{2})$$

Prop Suppose T & Z(V), V any finite-dim US, her an upper triangular form. Then the entries on the diagonal are precisely the eigenvalues of T.

Metric space

Definition: Let X be a set. A function d: XX -> R is called a metric if the following conditions holds Vu, v, w e X (1) $d(x_{iy}) > 0$ if $x \neq y$ and d(x,x)=0(2) d(x,y) = d(y, x) (symmetry) (3) $d(u,v) + d(v,w) \ge d(u,w)$ × / Def A require (xu) up in a metric space (X, d) is called a Cauchy sequence 4 YETOJNEN Yu,m>N d(xu, xu) < €

x
A sequence
$$(x_{u})_{u}$$
 counses to $x \in X$ if
 $\forall E = 0 = N \in I$ $\forall u = N, d(x_{u}, x) < E$

Sequence
$$(x_{u})_{u}$$
, $x_{u} = \frac{1}{v}$ ou $\tilde{X} = [0, 1]$.
Here, (x_{u}) is a Counchy sequence that courses
to 0.

Notation:
$$B_{\mathcal{E}}(u) := \left\{ x \in X \mid d(x, u) < \mathcal{E} \right\}$$
 ball
 $D_{\mathcal{L}} f$ A pat $\mathcal{U} \subset X$ is called cloud if all
Coundry-requesces course and have their limit point in \mathcal{U} .
A sat $\mathcal{U} \subset X$ is called open if
 $\forall u \in \mathcal{U} \ \exists \ \mathcal{E} \ \forall 0 : B_{\mathcal{E}}(u) \subset \mathcal{U}$.
 $.$ Let $[o, 1]$ is cloud
 $.$ set $\exists o_{1} \land \mathcal{L}$ is open:
 \mathcal{L}

$$0 \qquad 1 \\ B = Ju - \varepsilon, u + \varepsilon [$$

• A cut ll cau be neither open vor clased: E0,1E

Det A set U is dense in X if we can approximate every xeX by a sequence in U. Formally, VXEX VE70 BECXINU = Ø Grandle: RCR is dense.

The Aret UCX is bounded if there exists 500 ruch that Vuiv GU, d(u,v) < D

Normed spaces

$$\frac{\mathcal{D}_{eff}}{\mathcal{D}_{eff}} \quad Let \ V \ be a vector space. \ A \underline{uorun} \ on \ V \ is$$

$$= \int \mu uohion \ \|\cdot\|: V \rightarrow \mathbb{R} \quad such \ hat \ \forall x_i y_i \in V \ , \ d \in F$$

$$= \int \mu uohion \ ore \ hrue:$$

$$(NA) \ \|\lambda \cdot x\| = |A| \cdot \|x\| \quad (homogeneous)$$

$$(N2) \ \|x + y\| \leq \|x\| + \|y\| \quad (hriangle inequality)$$

$$(N3) \ \|x\| = 0 \ \leq x = 0$$

$$(N4) \ \|x\| = 0 \ = 5 \quad x = 0$$

$$\|\cdot\| \ is \ a \ \underline{nemi-uorun} \quad if \ (NA) - (N7) \ ore \ natisfied.$$

$$\underbrace{[utuihion} \quad uorun \ (x) = \ (eughh \ off \ x \ 0)$$

· H. IIp is a norm if p 21

 $\rho > \infty$

 $pef: ||x||_d := max |x|$ (is a norm)

$$\| x \|_{O} := number of uou-200 coordinates$$

$$\int_{i=1}^{d} \frac{1}{\sum x_{i} \neq 0}$$

Equivalent norms

Theorem At usuas on
$$\mathbb{R}^{U}$$
 are $(topologicall_{7})$ equivalent:
If $H \cdot H_{a}$ and $H \cdot H_{b}$: $\mathbb{R}^{H} \rightarrow \mathbb{R}$ are two usuar on \mathbb{R}^{H} ,
Have have anit constructs $a_{1}H > 0$ such that
 $\forall x \in \mathbb{R}^{H}$: $d \| x \|_{a} \leq h \times H_{b} \leq \beta \| x \|_{a}$
Proof: $W \cdot (top)$, we pour that if $H \cdot H$ is any usuar on \mathbb{R} ,
Have it is equivalent to $H \cdot H_{c0}$ on \mathbb{R}^{H} .
First inequality: $\exists c_{1} > 0$: $\forall x \| x \| \leq c_{1} \| x \|_{c0}$
Let $x = \sum x_{i} e_{i}$ the representation of x in the
shandow boris of \mathbb{R}^{H} .
 $\| x \| = \| \sum_{i=1}^{M} x_{i} e_{i} \| \|$
 $\leq \sum_{i} \| x_{i} e_{i} \| \|$
 $\leq \sum_{i} \| x_{i} e_{i} \| \|$
 $= \sum_{i} | x_{i} | \| e_{i} \|$
 $\leq \sum_{i} \| x \|_{c0} \cdot \| e_{i} \|$
 $= \| x \|_{c0} \cdot \sum_{i} \| e_{i} \|$

Second inequality:
$$\exists c_2 > 0 \quad \forall x \quad || x ||_{\mathcal{O}} \leq c_2 \cdot || x \mid ||$$

Let $S := \{x \in \mathbb{R}^d \mid || x ||_{\mathcal{O}} = \Lambda_j^2 \text{ be the unit prhere withingonometry of the second seco$

The S is closed and bounded, thus by Theorem of
theine-Borel, S compost. Any continuous mapping
or a compact set takes its win and mox.

$$\widetilde{C}_2 := \min \{f(x) \mid x \in S\}$$

$$x \in S: \quad \|x\| = \left\| \frac{x}{n} \right\| = \left\| \frac{x}{n \times n} \right\| = \frac{\|x\|}{\|x\|_{\infty}}$$

$$=) \tilde{c}_{2} \leq \frac{\|x\|}{\|x\|_{\infty}}$$

 $\| \times \|_{\infty} \leq c_2 \cdot \| \times \|$.

M

Couver sets - unit balls of norms

Theorem : (a) Let
$$C \subseteq \mathbb{R}^{d}$$
 closed, course, symmetric
and how non-empty interior. Define
 $p(x) := \inf \{f \ge 0 \mid x \in C \}$. Then
 $= \inf \{f \ge 0 \mid x \in C \}$, then might be more
 p is a norm, and its unit ball coincide with C
 $(Hat is_1 \subseteq f x \in \mathbb{R}^d \mid p(x) \le A\}$
(2) For any norm $\|I \cdot V = \mathbb{R}^d$, the put $C := \{x \in \mathbb{R}^d \mid k, k \le A\}$
(2) For any norm $\|I \cdot V = \mathbb{R}^d$, the put $C := \{x \in \mathbb{R}^d \mid k, k \le A\}$
(3) For any norm $\|I \cdot V = \mathbb{R}^d$, the put $C := \{x \in \mathbb{R}^d \mid k, k \le A\}$
(4) For any norm $\|I \cdot V = \mathbb{R}^d$, the put $C := \{x \in \mathbb{R}^d \mid k, k \le A\}$
(5) For any norm $\|I \cdot V = \mathbb{R}^d$, the put $\{f \ge 0\}$ is normalized by millips C
non-empty interior.
(4) For any taken \mathbb{R}^d , the put $\{f \ge 0\}$ is $C \in \mathbb{R}^d$ if M is \mathbb{R}^d is normalized by matrix \mathbb{R}^d
(5) \mathbb{R}^d is well defined
(5) \mathbb{R}^d or \mathbb{R}^d is \mathbb{R}^d , the put $\{f \ge 0\}$ is $C \in \mathbb{R}^d$
(5) \mathbb{R}^d is \mathbb{R}^d ($k \in \mathbb{R}^d \in \mathbb{R}^d$) \mathbb{R}^d
(5) \mathbb{R}^d is \mathbb{R}^d ($k \in \mathbb{R}^d \in \mathbb{R}^d$) \mathbb{R}^d
(5) \mathbb{R}^d (5) \mathbb{R}^d ($k \in \mathbb{R}^d \in \mathbb{R}^d$) \mathbb{R}^d
(6) \mathbb{R}^d (7) \mathbb{R}^d ($k \in \mathbb{R}^d$) \mathbb{R}^d ($k \in \mathbb{R}^d$) \mathbb{R}^d
(7) \mathbb{R}^d (7) \mathbb{R}^d ($k \in \mathbb{R}^d$) \mathbb{R}^d (7) $\mathbb{R$

$$p(\alpha \cdot x) = \inf \left\{ f \ge 0 \right| \quad \frac{x}{t} \in C_{j}^{2} = c_{j:x} \frac{t}{\alpha}$$

$$= \inf \left\{ \alpha \cdot s \ge 0 \right| \frac{x}{s} \in C_{j}^{2}$$

$$= \alpha \cdot \inf \left\{ \frac{1}{s} \ge 0 \right| \frac{x}{s} \in C_{j}^{2}$$

$$= \alpha \cdot \inf \left\{ \frac{1}{s} \ge 0 \right| \frac{x}{s} \in C_{j}^{2}$$

$$= \inf \left\{ \frac{1}{s} \ge 0 \right| \frac{x}{t} \in C_{j}^{2} = \frac{x}{t} - \frac{x}{t} \in C \Rightarrow \frac{x}{t} \in C$$

$$= \inf \left\{ \frac{1}{s} \ge 0 \right| \frac{x}{t} \in C_{j}^{2} = p(x)$$

$$\cdot \operatorname{Combing} \operatorname{He} \operatorname{Hoo} \operatorname{obslandst} \operatorname{priss} \operatorname{Heomosphericly}.$$

$$\Delta - \operatorname{Inequality} \quad \operatorname{Combinus} x_{i} \ge 0 \operatorname{flow}_{i} = \alpha \cdot \operatorname{Thus}_{i} \operatorname{hos} \operatorname{combinus}_{j},$$

$$\Delta - \operatorname{Inequality} \quad \operatorname{Combinus} x_{i} \ge 0 \operatorname{flow}_{i} = \alpha \cdot \operatorname{Thus}_{i} \operatorname{hos} \operatorname{combinus}_{j},$$

$$\frac{s}{s+t} \cdot \frac{s}{s+t} = \alpha \cdot \operatorname{Thus}_{i} \operatorname{hos} \operatorname{combinus}_{j},$$

$$\frac{s}{s+t} \cdot \frac{s}{s+t} = \alpha \cdot \operatorname{Thus}_{i} \operatorname{hos} \operatorname{combinus}_{j},$$

Want to
prove:
$$\frac{2}{|v| + \frac{1}{|v|}} = \frac{|v| + \frac{1}{|v|} + \frac{1}{$$

$$\frac{s}{s+t} \cdot \frac{x}{s} + \frac{t}{s+t} \cdot \frac{y}{t} \in C$$

$$\frac{x+y}{s+t} \in C$$

$$p(x+y) = \inf \{u > 0 \mid \frac{x+y}{u} \in C\} \leq u_0$$

$$= s+t$$

$$s \quad t_0 \quad p(y)$$

$$s \quad t_0 \quad t_0(y) \quad t_0(y)$$

$$t \quad \frac{y}{t} \in C$$

$$t \quad \frac{y}{t} \in C$$

$$Couridu = equince \quad (r_i)_{i \in N} \quad rach \quad hat$$

$$\frac{x}{s_i} \in C \quad and \quad s_i \rightarrow p(x)$$
Similarly $(t_i)_{i \in N} \quad such \quad hat \quad \frac{y}{t_i} \in C \quad and \quad b_i \rightarrow p(y)$

$$Similarly \quad (t_i)_{i \in N} \quad such \quad hat \quad \frac{y}{t_i} \in C \quad and \quad b_i \rightarrow p(y)$$

$$By \quad he \quad wjummit \quad abore, \quad we \quad haow \quad haf$$

$$b_i : \quad p(x+y) \leq s_i \in t_i$$

$$y \quad y \in y$$

=) $p(x+y) \leq p(x) + p(y)$.

$$p(x) = 0 \quad (a) \quad inf \{t : z \in] \quad (b) \in C \} = 0$$

$$=) \quad flow exists a sequence $(t_{k})_{k \in N} \quad such \quad Heat$

$$t_{k} = 0 \quad and \quad \frac{x}{t_{k}} \in C \quad \forall h \; .$$

$$V_{3W} \quad assume \quad Heat \quad x \neq 0 \; . \quad fless \quad He \quad sequence$$

$$\left(\frac{x}{t_{k}}\right)_{k \in N} \quad is \quad unbounded \; . \quad Y \quad Contradiction \quad herouge$$

$$C \quad is \quad bounded \; .$$$$

Examples of normed function praces Space of continuous febr : Let T be a metric space, C^b(T) := {f: T -> R | f is continuous and bounded { JOGR: As norm on 26(T) we now up $\forall f \in T: |f(f)| \leq c$ kfllos := sup 1 f(r) | tet Then the space C⁶(T) with norm l. 10 is a Banoch space. Proof outline: . need to check vector prace axisms · norm akisms · completeness: follows from he fact that U. 1/20 induces uniform convogence Space of differentiable functions: Let $[a, b] \subset \mathbb{R}$, $\mathcal{C}^{1}([a, b]) = \{f: [a, b] \rightarrow \mathbb{R} \mid f \text{ is coult.}\}$ differen haste? Whith usrun? · Couridu le 1100. With this usin, CA is not complete. fz limit function

• Counidur
$$\|f\| := \sup_{t \in [a_ib]} \max \{|f(t)|, |f'(t)|\}$$

$$\|\|f\|\| := \|f\|_{\infty} + \|f'\|_{\infty}$$

e¹ ([a15]) with any of these has advants it a Banach space.

Countracting
$$L_p - proces$$

Countries $C^{b}(Ea, b]$ with the norm
 $uft_{n} := \int_{a}^{b} (f(f)) df$
Can see: $k \cdot b_{n}$ is a norm,
but the space is not complet.
Countries $R(Ea, b]$ of all Riemann - intermole functions
on $Ea, b] C dR$, together with $U \cdot b_{n}$.
However, on $R(Ea, b]$, $b \cdot b_{n}$ is not a
user : it is not true that
 $k f \theta = 0 = 5$ $f = 0$
 $X = \int_{a}^{c} f df = 0$
 $X = \int_{a}^{c} f df = 0$
 $X = \int_{a}^{c} f df = 0$

$$\mathcal{X}_{\mathcal{P}}(\mathsf{Ea},\mathsf{GJ}) := \{ f: \mathsf{Ea},\mathsf{GJ} \rightarrow \mathbb{R}, f \mathsf{meanwable}, \\ J f \mathsf{H}_{\mathsf{I}}^{\mathsf{P}} d \lambda < \infty \}$$

 $J (f \mathsf{C} \mathsf{H})^{\mathsf{P}} d \lambda < \infty \}$

for 1 4 p 2 00

$$\|f\|_{p} := \left(\int |f|^{p} dA\right)^{n/p}$$

$$\frac{\Pr(porihim \Lambda)}{\Pr(porihim \Lambda)} : \|f\|_{p} \text{ in a femil-norm on } \mathcal{L}_{p}.$$

$$\frac{\Pr(porihim \Lambda)}{\Pr(pori)} : \|f\|_{p} \text{ in a femil-norm on } \mathcal{L}_{p}.$$

$$\frac{\Pr(porihim \Lambda)}{\Pr(porihim \Lambda)} : \frac{\Pr(porihim \Lambda)}{\Pr(porihim \Lambda)} : \frac{\Pr(p$$

Define
$$g := \sum_{i=1}^{\infty} |f_i|$$

How [a,6] to R, night be as at certain paints.

$$\hat{g}_{n} := \sum_{i=1}^{n} |f_{i}| \in \mathbb{Z}_{p}$$

By this how shi,
If
$$g_n \parallel_p = \parallel \sum_{i=n}^n |f_i| \parallel_p \leq \sum_{i=n}^n \parallel f_i \parallel_p < \alpha$$

 $g_n \rightarrow g$ monotouously
By theorem of monotouously
By theorem of monotouously
and we have
 $\lim_{n \to 0} \int_{2n}^{p} d\lambda = \int \lim_{n \to 0} \int_{2n}^{p} d\lambda$
 $\lim_{n \to 0} \int_{2n}^{p} d\lambda = \int \lim_{n \to 0} \int_{2n}^{p} d\lambda$
 $\int_{2}^{q} \int_{3}^{q} d\lambda = \int \lim_{n \to 0} \int_{2n}^{q} d\lambda$
 $\int_{2}^{q} \int_{3}^{q} d\lambda = \int \lim_{n \to 0} \int_{2n}^{q} d\lambda$
 $\int_{2}^{q} \int_{3}^{q} d\lambda = \int \lim_{n \to 0} \int_{2n}^{q} d\lambda$
 $\int_{2}^{q} \int_{3}^{q} d\lambda = \int \lim_{n \to 0} \int_{2n}^{q} d\lambda$
 $\int_{2}^{q} \int_{3}^{q} d\lambda = \int \lim_{n \to 0} \int_{2n}^{q} d\lambda$
 $\int_{2}^{q} \int_{3}^{q} \int_{3}^{q} d\lambda = \int \lim_{n \to 0} \int_{2n}^{q} \int_{2n}^{q} d\lambda$
 $\int_{2}^{q} \int_{3}^{q} \int_{3}^{q} d\lambda = \int \int_{2n}^{q} \int_{2n}^{2n} \int_{2n}^{q} \int_{2n}^{q} \int_{2n}^{q} \int_{2n}^{2n} \int_{2$

g (r) - l O fe N

E Z pFrom Mis it was follows that f(Ct) : Z fi(Ct), $t \notin N$ with $For f \in N$, we set f(Ct) = 0. Now fir measurable, and in Z p

We contructed a space Z_p with the Lebergue integral as a semi-norm. This means, given $f \in Z_p$, we can change the produces of fin a set of measure O, monthing is \tilde{f} , but the norm "does not see a differce": $\|f - \tilde{f}\| = O$

We include equivalence relation $f \sim \tilde{f} : \iff f = \tilde{f} \quad a.e.$ Formally, $N := her (|I \cdot I|_p) := \{f \in Z_p \mid U \notin U_p = 0\}$ is a subspace of Z_p . $L_p ([\Box_{\alpha}(b])) := Z_p ([\Box_{\alpha}(b])/N)$

This worm MI is well-plefined: if fife Ef], Kun Miflip = liflip.

this "norm" is a norm, become

$$\| E f J \|_{p} = 0 = 2 \quad E f J = [0].$$

For simplicity, in feature we write liflp for HEFJIp.

J'calar product

por.

$$def \cdot \begin{pmatrix} (54) & \langle x_i x \rangle \ge 0 \\ (55) & \langle x_i x \rangle \ge 0 & \langle -\rangle & x \ge 0 \end{pmatrix}$$

 $\frac{Examples}{Examples} : \bullet Euclidean reales product on <math>\mathbb{R}^{4}$; $x = \begin{pmatrix} x_{i} \\ i \\ x_{n} \end{pmatrix}, y = \begin{pmatrix} y_{i} \\ y_{i} \end{pmatrix}$ $\leq x_{i} y > = \sum_{\substack{i=1 \\ i=1}}^{n} x_{i} y_{i}$ $\bullet \quad O_{u} \mathbb{C}^{n}, \quad \langle x_{i} y \rangle = \sum_{\substack{i=1 \\ i=1}}^{n} \overline{y}_{i}$ $\bullet \quad \mathcal{C} (E_{i}, b_{i}) : \quad \langle f_{i} g \rangle = \int f(E_{i}) g(f) df$ is a reales product (but space would ust be complete).

Consider a VS V with norm $|| \cdot ||$. Then $d: V \times V \rightarrow R$, $d(\kappa_{rr}) := || x - y ||$ is a metric on V, the metric induced by the norm. The olar direction does not work in puneral,

Orthogonal basis and projections

 $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}_{1}, v_{2} \in V} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{R}\mathcal{L}_{2} = \mathcal{R}\mathcal{L}}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{R}\mathcal{L}_{2} \in V} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{R}\mathcal{L}_{2} \in V} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{R}\mathcal{L}_{2} \in V} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{R}\mathcal{L}_{2} \in V}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{R}\mathcal{L}_{2} \in V} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{R}\mathcal{L}_{2} \in V}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}\mathcal{L}_{2} \in V} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}\mathcal{L}}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}\mathcal{L}}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}}$ $\frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{L}} = \frac{\mathcal{R}\mathcal{L}}{\mathcal{$

Vectors are called <u>or Monormal</u> if additionally, the two rectors have norm 1: $< V_{a_1}, v_2 > = 0$ $. ||v_{a_1}|| = 1$, $||v_{2_1}|| = 1$

A set of vectors v1, v2, ..., vn is called or Kesuserwal if any two vectors are orkesuserwal.

For a set SCV me define its orthogonal complement Star follows: St := freV/rLs UreS} Remark: We are particularly interested in orkeyonal /or hisuscand bases of a space. In an orkeonormal basis un,..., un, the representation of a vector V it given as

$$V = \sum_{i=1}^{u} \langle v_i | u_i \rangle u_i$$

A G Z (V) is called a projection if A² = A. Def blue vector sets projected ou red vector (aot or this poul)

<u>Theorem & Def</u>: Let U be a finih-dim subspace of a pre-Hilbert space H. Then there exists a linear projection $P_{U}: H \longrightarrow U$, and her $(P_{u}) = U^{\perp}$. P_{u} is then called the <u>orthogonal projection</u> of H on U.

Lu faibien:

la particular, < v, w) = cos a

Remark lu au orthonormal basis
$$u_1, ..., u_n$$
 the
representation of a vector v is given as
 $V = \sum_{i=1}^{n} \langle v_i, u_i \rangle U_i$

Untuition: iterative procedure
Shiph:
$$u_n := \frac{v_n}{\|v_n\|}$$

 $U_n := space \{u_n\}$
Step be: Assume kear we already identified $u_{n_1} \dots u_{k-n}$.
• Project v_k on U_{k-n_1} and here the rest":
 $\tilde{u}_k := \frac{v_k}{\|v_k\|} = \frac{Pu_{k-n_1}(v_k)}{\|v_k\|}$

Works is (would need to prove that, hipped)

Orthogonal matrices

אם אי אי א

Let Q & Rhan be a matrix with orthonormal (!) Def column rectors (wrt Euclidean scalar product). Then Q is called an orthogonal (!) matrix. If REC use and the columns or orthonormal (wit the shaudard scalar product on C"), then it is called A the librature is not completely consistent whether an orthogonal matrix needs to have rows/ook unitory. of norm 1. he any case, the definition only makes sure if the matrix it of full sail. See also (*) below. Examply • low $h'h_{7}:$ $\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$ • Reflection: $\begin{pmatrix} 1 & 0 \\ 0 & -\lambda \end{pmatrix}$ · remutation af coordinates: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ • Robation: $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ · Rotation in R3: · Robation about one of the axes: $\mathcal{R}_{\Theta,\Lambda} = \begin{pmatrix} \Lambda & O & O \\ \theta & \cos \theta & -n\dot{h} \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$

Theorem Let S & L(V) for a real VS V. Then equivalent:
(a) S is an isometry: It Sv II = IIV II & V e V
(b) there with an orthonormal basis of V such that
the matrix of S has the following form:

$$M = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

(*) Or theoremal vs. or theoremal: Gussider the projection matrix $A = \begin{pmatrix} 0 & 0 \\ 2 & n \end{pmatrix}$. The columns are obviously not or theoremal. The rows formally satisfy that $\langle \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix}_{n} \langle \frac{2}{n} \rangle > = 0$. The note that " rows or theoremal <-> cols or theoremal" does not hold here. But note that A is not an ortheoremal matrix because the latter regains all note that A is not an ortheoremal (in particular, also full rawh).

Symmetric matrices

$$\frac{P_{roof}}{P_{roof}} = \lambda \operatorname{eig.value} \operatorname{if} A \operatorname{with eigenvech} x. Hen
$$\frac{\lambda \langle x_{i}, x, 7 \rangle}{Z(x_{i}, x, 7)} = \langle Ax_{i}, x, 7 \rangle = \langle Ax_{i}, x, 7 \rangle = \langle X_{i}, Ax, 7 \rangle = \langle X_{i}, X_{i}, X_{i}, 7 \rangle = \langle X_{i}, X_{i}, X_{i}, 7 \rangle = \langle X_{i}, X_{i},$$$$

~

$$= C \left(x^{e} + b_{1} x + c_{1} \right) \dots \left(x^{e} + b_{M} x + c_{H} \right) \cdot \left(x - d_{1} \right) \dots \left(x - d_{m} \right)$$
que droche tour linear

Replace the x by T:

$$\mathcal{O} = \left(\alpha_0 + \alpha_n T + \dots + \alpha_n T^n \right) \vee = \left(c \left(\dots + \alpha_n T + \dots + \alpha_n T^n \right) \vee d = \left(c \left(\dots + \alpha_n T + \dots + \alpha_n T^n \right) + \dots + \alpha_n T^n \right) + \dots \right)$$

Now can prove: the quadratic tours are invertible, and we are
left with (at least one) linear factor:
$$O = (T - \lambda_n I) \cdots (T - \lambda_n I) v$$

Thue needs to exist at least one i such that
$$(T - i I)$$

is not invertible. Thus ti is an eigenvalue of T.

Spectral theorems for symmetic / hermitian matricos

A symmetric matrix A e R is Theorem : orthogonaly diagonalizable: Here with an arthogonal matrix QGR^{usu} and a diagonal watrix DER^{usu} r.t. $A = Q D Q^{t}$ $= \sum_{i=1}^{n} \lambda_i q_i q_i^{t} .$

Mearcus A hermitian matrix A & C^{nxu} unitarily diagonalizable: Hur white a unitary untrix U and a diagonal matrix D sith. A = UDU^t

In particular, the entries of D are real-valued.

Positive definite matrices

$$\frac{\partial cf}{\partial cf} \qquad A \text{ matrix } A \in \mathbb{R}^{h, k} \text{ is called}$$

$$\frac{\text{semi-olefinik}}{\text{positive definik}} (pd) \quad if \quad \forall x \in \mathbb{R}^{n}, \ x \neq 0:$$

$$x^{t} A \times > 0.$$

$$\ge$$

The A matrix A E C^{uxu} is called a Gram matrix
if hur withs a set of vectors
$$v_{1,...,1}v_{n} \in C^{n}$$
 s.M.
aij = < xi, xj?. Nok: Gram matrices are hermitian
(simidaly, on R^{axu}, then Gram matrices on symmetric).

$$Over C, we have that pol => self-adjoint.
Over R, this is upt true!
$$Example: A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad ou R, if
 x \neq 0
 x \neq 0
 x f A x = x_1^2 + x_2^2 > 0
 . So A is pol but not symmetric.
 Over C, the same matrix is not pol
 becomen x_1^2 + x_2^2 can be hegative !$$$$

Theorem :
$$A \in C^{uxu}$$
 hermitteen. Then equivalents:
(i) A is prod (pd)
(ii) Au eigenvalues of A are ≥ 0 (≥ 0)
(iii) The mapping $<\cdot, \cdot >$: $C^* \times C^* \rightarrow C$ with
 $< x_i Y >_A := \overline{Y}^{\pm} A \times$
Satisfies all propulses of a scale product
except one: if $< x_i \times ?_A = 0$ this does not
imply $\times = 0$.
(This mapping is a scale product.)
(iv) A is a Grown matrix of a vectors
which are not necessarily him. independent
(other one him independent).
 $a_{ij} = < x_{ij} \times j$
Roots of prod matrices

<u>Merrenn</u>: Let $A \in \mathbb{R}^{n_{M}}$ be symmetric, prod. Then there exists a matrix $B \in \mathbb{R}^{n_{M}}$, B prod ruch that $A = B^2$, Sometimes B is called the square root of A, sometimes denoted as $B = (A)^{N_2}$.

$$\frac{Proof}{A} = UDU^{t}, \quad 0 \quad diagonal.$$

$$Proof = \int eigen values \ge 0$$

$$D = \begin{pmatrix} \lambda_{n} & 0 \\ 0 & \lambda_{n} \end{pmatrix}, \quad \lambda_{i} \ge 0$$

$$Define \quad \sqrt{D} := \begin{pmatrix} \sqrt{\lambda_{n}} & 0 \\ 0 & \lambda_{n} \end{pmatrix} \quad aud \quad pt$$

Variational characterization of
eigenvalues
Def Let
$$A \in \mathbb{R}^{nnn}$$
 be a symmetric matrix.
 $\mathbb{R}_{A} : \mathbb{R}^{n} \setminus \{0\} \to \mathbb{R}$, $x \mapsto \frac{x^{t}Ax}{x^{t}x}$
is called the Rayleigh coefficient.
Prop Let A be symmetric, let $A_{1} \equiv A_{2} \equiv \dots \equiv A_{n}$
be the signivalues and $v_{1,m}$, v_{n} the signivectors of A .
Then:
min $\mathbb{R}_{A}(x) \equiv \min x^{t}Ax \equiv A_{1}$, attained at
 $x \in \mathbb{R}^{n}$ $\|x\| = A = A_{1}$, attained at
 $x \in \mathbb{R}^{n}$ $\|x\| = A = A_{1}$, attained at
 $x \in \mathbb{R}^{n}$ $\|x\| = A = A_{1}$, attained at
 $x \in \mathbb{R}^{n}$ $\|x\| = A = A_{1}$, attained at m .
Intuition : Assume A is separad in hours of the basis $v_{1,m}$, v_{n}

ition: Assume A is expanded in turns of the passis variation

$$A = \begin{pmatrix} \lambda_{n} & 0 \\ 0 & \lambda_{n} \end{pmatrix}$$
Let y be a rector, also represented
in this basis

$$(\gamma = \gamma_{n} v_{n} + \gamma_{n} v_{n} + \gamma_{n} v_{n})$$

(*)
$$y^{b}Ay = \lambda_{a} y_{a}^{2} + \dots + \lambda_{u} y_{u}^{2}$$

Among the vectors $\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$, \dots , $\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$
the swellest result of $y^{b}Ay$ would be pine by
the vector $\begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}$, and the value would be λ_{1}
 $= V_{A}$

$$\frac{\text{Hore prived proof diebeli: Arrive we short with the shundhird
basis. Let $Q = \begin{pmatrix} v_n & \dots & v_n \\ i & \dots & v_n \end{pmatrix}$ be the basis brown privation.
 $Observe: Q \text{ or Hesgound}_i \text{ are base.}$
 $A = Q^{\pm} \land Q$ with $\land dragonal$.
For a vector $x = \begin{pmatrix} y_n \\ \vdots \\ x_n \end{pmatrix}$ in the original basis, we now counsider
 $y: = Q^{\pm} x$.
 $R_{A}(y) = \frac{(Q^{\pm}x)^{\pm} (Q^{\pm} \land Q) (Q^{\pm}x)}{(Q^{\pm}x)^{\pm} (Q^{\pm}x)} \qquad (Q^{\pm}x)^{\pm} = x^{\pm} Q$
 $= \frac{x^{\pm} Q Q^{\pm} \land Q Q^{\pm}x}{x^{\pm} Q Q^{\pm}x} = \frac{x^{\pm} \land x}{x^{\pm} x} = \frac{I_{A}x_{i}^{2} + \dots + J_{A}x_{i}^{2}}{||x||^{2}}$$$

min R(y) = min $\|y\| = \Lambda$ $\|x\| = \Lambda$

This win. is a fained for
$$x = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, that is
 $y = Q^{t} x = v_{1}$, with value $R(y) = -1_{1}$.

Intuition Consider operator A restricted to the space

$$V_n^{\perp} := (space \{v_n\})^{\perp}$$
. We know that on this
space, A is inversant and symmetric, so we can
apply Rayleigh to this "smaller" space.
 $V_n^{\perp} = space \{v_{2}, ..., v_n\}$
if we apply Rayleigh to V_n^{\perp} , then we get
the solution $I_{2,1}^{\perp} V_{2}$.

· Consider another subspace, for example spacead by vp, vg, 40

max
$$K_{A}(x) = \lambda_{10}$$

xol

Singular value de composition

Proposition Countries
$$A \in \mathbb{R}^{m \times m}$$
 of rank r . Then we ran
write A in the form
 $A = U \cdot Z \cdot V^{t}$
where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{m \times m}$ are orthogonal matrices and
 $Z \in \mathbb{R}^{m \times m}$ is "diagonal".
 $m \begin{pmatrix} G & G \\ O & G \\ O \end{pmatrix} = m \begin{pmatrix} G & O \\ O & G \\ O \end{pmatrix}$

Exactly r of the diagonal values 61, 621... ar nou-zero.

$$\frac{P_{roof}}{B_{i}} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{A^{t}A}{W_{i}} = A^{t}(A^{t}A)^{t} = A^{t}(A^{t}A)^{t} = A^{t}A$$

$$\frac{B_{i}}{W_{i}} = A^{t}(A^{t}A)^{t} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}(A^{t}A)^{t} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}(A^{t}A)^{t} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}(A^{t}A)^{t} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}(A^{t}A)^{t} = A^{t}A \qquad G \ \mathbb{R}^{u \times u}$$

$$\frac{B_{i}}{W_{i}} = A^{t}A \qquad \mathbb{R}^{u}A \qquad \mathbb{R}^{$$

So have exists an orthouser basis of eigenvalues $x_{1,\dots,x_{n}}$ with eigenvalues $x_{1,\dots,x_{n}} \ge 0$.

Define:

•
$$Z = "diag (\sigma_i)" \in \mathbb{R}^{m \times n}$$

where $\sigma_i = \sqrt{\lambda_i}$
• $\mathcal{U} = \begin{pmatrix} 1 \\ r_i \end{pmatrix}$ unitrix with column

$$r_i := \frac{A_{k_i}}{\epsilon_i}$$

• $V = \begin{pmatrix} l \\ kc \\ l \end{pmatrix}$ matrix with k_i as columns

Now we need to show that with these definitions we have $A = U \cdot \Sigma \cdot V^{t}$.

Shetch:

• Column of $U \cdot Z_i$ are given as $\sigma_i \cdot r_i = \sigma_i \cdot \frac{A \times i}{\sigma_i} = A \times i$

- · U, V are arthonormal! (not true for signerectors in proval).
- · singular values are always real and non-negative.
- If A E R^{uxu} is symmetric, hun the AD is "nearly the same" or the eigenvalue decomposition: (i, vi) are the eigenvalues/vectors of A, then

AtA.

- · Left-singular vectors of A are the eigenvectors of AAT.
- · Right -
 - . $\lambda \neq 0$ is a sign volue of AA^{t} (=> V $\overline{\lambda} \neq 0$ is singular volue of A

Given a matrix
$$A \in \mathbb{R}^{m \times n}$$
. Define the following using:

$$\|A\|_{max} = \|A\|_{\infty} = \max_{\substack{i \in i \\ i \in j}} |a_{ij}|$$

$$\|A\|_{\Lambda} = \sum_{\substack{i \in i \\ i \in j}} |a_{ij}|$$

$$\|A\|_{\mu} = \sqrt{\sum_{\substack{i \in i \\ i \in j}} a_{ij}^{2}} = \sqrt{\operatorname{tr}(A^{t}A)}$$

$$\int_{1}^{\infty} \operatorname{trebenius} = \sqrt{\sum_{\substack{i \in i \\ i \in j}} a_{ij}^{2}} \operatorname{where} \sigma_{i} \operatorname{are} here$$

$$\operatorname{singular} velues of A.$$

$$\|A\|_{2} = \int_{\max} (A) \quad \text{where } \int_{\max} ir ke |arport singular on the largest singular on the largest$$

Given matrix $A = U \sum V_1^t$ entries $\sigma_1, \sigma_2, \dots$ sorted in decreasing order, lea W. Now we are going to define a new matrix A_k by the following procedure:

Hore formally:

$$A_{k} = \sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{t}$$

Prop Let B be any rank-h-matrix
$$G \mathbb{R}^{WAY}$$
. Then:
 $\|A - A_{W}\|_{F} \leq \|A - B\|_{F}$.
"Any is the best rank-h-approximation (in Frodenic worm)."

Prop For any matrix I of rank k, BG R^{mxy},
UA-Ak U₂
$$\leq$$
 UA-BU₂. where
U·U₂ denotes the operator norm.
"A_k is the bot rank-h-approximation (in operator wrm)".

Pseudo-inverse

Definition for
$$A \in \mathbb{R}^{m \times n}$$
, a psoudor inverse of A is
defined as the matrix $A^{\pm} \in \mathbb{R}^{m \times m}$ which satisfies the
plowing conditions:
if it is power
(A) $A A^{\pm} A = A$
if it is power
(A) $A A^{\pm} A = A$
if is power
(A) $A A^{\pm} A = A$
if is power
(A) $A A^{\pm} A = A$
if is power
(A) $A A^{\pm} A = A$
if is power
(C) $(A^{\pm} A A^{\pm} = A^{\pm})$
(C) $(A^{\pm} A)^{\pm} = A^{\pm} A^{\pm}$
(C) $(A^{\pm} A)^{\pm} = (A^{\pm} A^{\pm})^{-1}$
(C) $(A^{\pm} A)^{\pm} = (A^{\pm} A)^{-1}$
(C) $(A^{\pm} A)^{-1} = (A^{\pm} A)^{-1}$
(C) $(A^{\pm$

Proposition: Let
$$A \in \mathbb{R}^{m \times u}$$
, $A = U \geq V^{t}$ its SVO. Here:

$$A^{t} := V Z^{t} U^{b} \quad with \qquad \Sigma^{t} \in \mathbb{R}^{m \times u} = \begin{pmatrix} \sigma_{1} & \sigma_{n} \\ & \sigma_{n} \end{pmatrix}$$

$$\sum_{ii}^{t} = \begin{cases} M \Sigma_{ii} & if \quad \Sigma_{ii} \neq 0 \\ 0 & oflowwise \end{cases}$$

$$[utuitism: Arrume \quad A \in \mathbb{R}^{u \times u}, \quad in while, \quad arrume it the eigendecomposition \quad A = U D U^{t}. \quad Hen:$$

$$Mt \quad extrems \quad in \quad diag (D) \quad arr \neq 0 \quad (eigenvalues \neq 0)$$

$$A^{-1} = U D^{-1} U^{t} \quad with \qquad D = \begin{pmatrix} M_{1}, & \sigma_{1} \\ & \sigma_{1} & \sigma_{2} \end{pmatrix}$$

$$D^{-1} = \begin{pmatrix} M A_{2}, & \sigma_{1} \\ & M A_{2}, & \sigma_{1} \end{pmatrix}$$

Prosf: easy, just do c't.

Operator usun

Meeters
$$X_1$$
 4 normed spaces, $T: X \rightarrow Y$ lives. Thenhere following stokeneds on equivalual:(i) T is continuous of 0 .(ii) T is continuous of 0 .(iii) T is continuous of 0 .(iii) T is bounded: 3 H > 0 $\forall x \in X: \|Tx\| \leq M \cdot \|x\|$ (iv) T is uniformly continuous. $\forall E > 0 \exists S > 0 \forall x \in X: \|Tx \| \leq M \cdot \|x\|$ (iv) T is uniformly continuous. $\forall E > 0 \exists S > 0 \forall x \in X \forall y \in X:$ $\|x - y\| < S \Rightarrow \|Tx - Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx - Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx - Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx - Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx - Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx - Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < E$ $\|x - y\| < S \Rightarrow \|Tx + Ty \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx \| < S$ $\|x - y\| < S \Rightarrow \|Tx$

(=xan plas

- Evaluation operator: $T: C[o, 1] \rightarrow R$, Tf = fro). Ar norme counides $\|\cdot\|_{ob}$ on C[o, 1], $|\cdot|$ on R. Then $\|T\| = \Lambda$. $\frac{\|Tf\|}{fector \|f\|} = \sup_{\sigma} \frac{\|f(\sigma)\|}{\|f\|_{ob}} = \operatorname{consiste} = \Lambda$
- Integral operator: $T: C(D, \Lambda) \rightarrow R, Tf = \int_{D}^{\Lambda} f(f) df$ With the same usual or above, T is cout, and has $\|T\| = \lambda$.
- D: flormhad openet: D: C^A[o₁A] -> C[o₁A], f r> f^I.
 Consider ll. 10 on 2^A and C. Then Dir linear, but not continuous!
 - · Consider III fill :- Il f lloo + Il f'lloo on Ch. Cuille His usru, D is continuous and bounded.

Dual space

Definition VVS, T: V -> Fis called a functional. Given a vector space V, He algebraic dual space V* couriets of all linear functional on V:

$$V^* := \chi(v, F).$$

We endow the dual space with the operator usual

$$\|T\| := \sup_{x \in X} \frac{\|T_x\|}{\|x\|}$$

Examples :

- K C R compact set, C(K) space of cont. fcts
 with U. Voo. Then (C(K))' is equivalent is
 He space H(K), the space of all (Radon) measures
 over K.
- $S \subset \mathbb{R}$ meanwable pet, $\Lambda \leq \rho < \infty$, q such that $\frac{1}{\rho} - \frac{1}{q} = 1$. Then: the dual of $L_{\rho}(S)$ is given as $L^{q}(S)$.

<u>Heorem</u>: H Hilbert space, H' its dual. Hen He mopping $\Phi: H \rightarrow H'$, $\gamma \mapsto \langle \cdot, \gamma \rangle$ is bijective, isometric, and satisfies $\Phi(Ax) = \overline{A} \Phi(\gamma)$. Stated differently: for any mapping $x' \in H'$ there exists a unique $\gamma \in H$ such that $x'(x) = \langle x, \gamma \rangle$.

Det let
$$T \in \mathcal{J}(H_1, H_2)$$
, H_1, H_2 Hillert spaces. Then
Hur with an operate $T^*: H_2 \rightarrow H_1$ ruch that
 $< T_{X_1} Y \gamma_{H_2} = < x_1 T^* \gamma \gamma_{H_1}$.
for all $x \in H_1$, $\gamma \in H_2$. T^* is called the adjoint of T .

Def An operator
$$T: H_1 \rightarrow H_1$$
 is called self-adjoint
if $\langle Tx, \gamma \rangle = \langle x, T\gamma \rangle$