Sequences and counque

Obervahions

- · a sequece can have many acc. points (or no acc. point)
- · even if the sequence har just one acc. point, it is not nece. a Canchy sequence.
- · If (Ku), converse to x, then x is the only acc. point and the sequence is Courty.

Assume marcou R (or more pureal, on a space that has a total ordering). Let UCR be a subset.

· x is ralled supremum of U if it is the smallest apper bound. A is the rup of 30,1E

type concilia

Liminf, Limny
For a requesce
$$(x_n)_n \subset \mathbb{R}$$
 we define:
liminf $x_n := \lim_{n \to \infty} (\inf_{m \ge n} x_m)$
 $n \to \infty$
liming $x_n := \lim_{n \to \infty} (\sup_{m \ge n} x_m)$
 $n \to \infty$
For a bounded requence $(x_n)_n$ (i.e. there exists an
upper bound u $\in \mathbb{R}$ other bits $x_n \le u$, and a
loover bound l $G\mathbb{R}$ bit $\in \mathbb{N}$: $x_n \ge L$)
the liming is the loopet accumulation point of $(x_n)_n$.
liminf publicit
them he liminf is the loopet $y \in \mathbb{R}$ such that
 $b \ge 0 \neq \mathbb{N}$ for $x_n \ge y_n \ge L$.
Liminf $I \in \frac{1}{2}$

;___ ÷.

 $\frac{Det}{(X,d)}, (Y,d) \text{ is called <u>continuous at xo</u> e X if$ $<math display="block">\frac{V E > 0 \exists \delta > 0 \quad \forall x \in X: \quad d(x,x_0) < \delta \Rightarrow d(fcx), f(x_0) < \varepsilon}{\int_{x_0}^{x_0} \int_{x_0}^{x_0} \int_{x_0}^{x_0$

. .

Altenative definition: f: X > 4 is ralled cont. at x3 if for every sequence (xu)n C X we have: Xn -> X0 => f(xu) -> f(x0)

A function f: X -> 4 is called <u>continuous</u> if it is continuous for every to EX: <u>Hxo EX</u> HE >0 3570 HxEX: d(x, to) 25 => d(f(x), f(xo)) <E

A function
$$f: X \to Y$$
 is called Lipschitz continuous
with Lipschitz constant L if
 $\forall x, y \in X : d(fcx), f(y)) \leq L \cdot d(x, y)$
 $lutwition: bounded derivative$

Intermediate value Messeus:
If
$$f: [a,b] \rightarrow \mathbb{R}$$
 is continuous, then f attains all
values between $f(a)$ and $f(b)$:
 $\forall \gamma \in \mathbb{C}f(a), f(b)] \quad \exists x \in \mathbb{C}a,b]: \quad f(x) = \gamma$.

Invohible functions: DCR, f: D->R continuous, strictly monotone (a < b => fra) < fra). Then f is invertible and the inverse is continuous as well.

e la vorhible follows pour monobouricity

. Continuity of the inverte follows directly for cout. of f.

Sequences of functions

Def: Couridus functions: fu: D -> R, DCR. We say that the sequence (fuluEN converges pointwike hof: D > R if K× ∈ D: fu(x) → f(x) $y_{n} := f_{u}(x)$, y := f(x)Yu -> Y Example: fu, f: [0, 1] -> R, fu(x) = X ns 2 N=3 $f(x) = \begin{cases} 0 & x = 0 \\ 1 & s Howigh \end{cases}$ fn => f pointwish, all fu continuous, his does not imply that f is continuous. /!\ Def (fu) a converges to f uniformly if VEZO JNEN VUDN VXED: Ifum-Kanl < E

Alknative definition: for -> & uniformly iff 11fn-fhoo->0.

Theorem (Uniform convergence preserves continuity) fuif: D -> R, DCR, all fu are continuous, -> funiformly. Then f it continuous.

Derivatives (1-dim rase)

It is the derivatives:
We can reprote the process of taking derivatives:

$$f' = \frac{df}{dx}$$
; $f'' = \frac{df'}{dx}$
Notation: $f^{(n)}$ denotes the n-th derivative (if aister).
In portant theorems

Heorem (Differentiable implies continuous)
Let f be differentiable at a . Then there exists a constant ca
such that on a small ball around a we have
$$|f(x) - f(a)| \leq ca \cdot |x - a|$$

In particular, f is continuous at a.

$$\frac{44eorem}{f \in C^{1}([a, b]).} (i.e. functions on Jabl that are once
cont. differentiable).
Then there exist $\overline{3} \in [a, b]$ such that

$$\frac{f(6) - f(a)}{b - a} = f'(\overline{3}).$$$$

F

5

Theorem (Exchanging lim and derivative)
fu:
$$[a_1b] \rightarrow R$$
, fu $\in C^{n}[a_1b]$. If the limit
 $f(x) := \lim_{n \to \infty} f_n(x)$ exists for all $x \in [a_1b]$ and the duivatives
fu' coump uniformly, then f is cont. different hable and
we have
 $(f^{1})(x) = (\lim_{n \to \infty} f_n)^{2}(x) = \lim_{n \to \infty} \int_{0}^{1} (x) = \lim_{n \to \infty} \int_{0}^{1} (x) \int_{0}^{1} (x)$

missing in video

! Uniform cont. is really important, other with would be using!

Riemann integrals

Consider a function
$$f: [a, b] \rightarrow \mathbb{R}$$
, arrune
Hunt f is bounded
 $(\exists l, u \in \mathbb{R} \ \forall x \in [a, b]: \ l \leq f(x) \leq u)$.
Consider $k_0, k_1, ..., k_n$ with
 $a = x_0 \leq k_1 \leq k_2 \ldots \leq k_n = b$.
Thex points introduce a partition
of $[a_1b]$ into u intervals
 $I_k := [k_k - a_1, k_k]$.
Hunt
Hunt
Phine $m_k := \inf(f(f(I_k)))$

Shfine
$$m_k := \inf (f(L_k))$$

 $M_k := \sup (f(L_k))$
 $K_{k,n} = K_k (-kists because f is bounded).$

Define the lower sum

$$s\left(f, \left\{x_{0}, x_{1}, \dots, x_{n}\right\}\right) = \sum_{k=\Lambda}^{n} |I_{k}| \cdot m_{k}$$

and the upper sum $S(f_1 \{x_{s_1}, \dots, x_n\}) = \sum_{k=1}^{n} |I_k| M_k$

Now define

$$J_{x} := \sup_{partition} (S(f_{1} partition))$$

$$J^{*} := \inf_{partition} (S(f_{1} partition))$$

$$J^{*} := \inf_{partition} (S(f_{1} partition))$$

$$Me call f Riemann-inkproble
if $J_{x} = J^{*}$. Then on
denote

$$J_{x} = J^{*} = : \int_{f} (f_{1}) df.$$

$$J_{x} = J^{*} = : \int_{f} (f_{1}) df.$$

$$Theorem : \cdot f: [a_{1}5] \rightarrow R monotone = s integrable
(i.e. $x_{n} \leq x_{2} = s f(x_{n}) < f(x_{2})$)

$$\cdot f: [a_{1}6] \rightarrow R continuous = s integrable
(errun true if f in continuous everywhen except
at finithy many point)$$$$$$

Fundamental theorem of calculus

Theorem I:
$$f: [a_1b] \rightarrow \mathbb{R}$$
 (Riemann) - integrable and
continuous at $\overline{r} \in [a_1b]$. Let $c \in [a_1b]$. Then the function
 $\overline{F(x)} := \int_{c}^{x} f(t) dt$
is differentiable at \overline{s} and $F'(\overline{s}) = f(\overline{r})$. \overline{F} continues
 $f \in C(\overline{r}, \overline{r})$, then $\overline{F} \in \mathbb{C}^{4}(\overline{r}, \overline{r})$ and
 $F'(\overline{x}) = f(x)$ for all $x \in [a_1b]$.
Theorem I: $F: [a_1b] \rightarrow \mathbb{R}$ continuously differentiable, then
 $\int_{a}^{b} P'(t) dt = \overline{r}(b) - \overline{r}(a)$.
 $\overline{F(x)} = f(x)$

Informal, algeboraic version:
The integral operator I: CEarb]
$$\longrightarrow C_{c}^{1}(Earb])$$

with $C_{c}^{1}[Earb] := \{f \in C^{1}[Earb] : f(c) = 0\}$
is an isomorphism (linear, bijechin) and its
inverse is the differential speator.

$$\frac{P \operatorname{roof} I}{h} : \operatorname{Derd} ho \operatorname{prove hat} F \operatorname{ir} diff. at 5.$$

$$\operatorname{Gundur} A(h) := \frac{F(3+h) - F(5)}{h}$$

$$= \frac{A}{h} \left(\int_{C}^{3+h} f(t) dt - \int_{C}^{3} f(t) dt \right)$$

$$= \frac{A}{h} \int_{C}^{3+h} f(t) dt \quad \operatorname{hbut} ho \operatorname{prove} : \operatorname{convergen} h f(1)$$

$$= \frac{A}{h} \int_{S}^{3+h} f(t) dt \quad \operatorname{hbut} ho \operatorname{prove} : \operatorname{convergen} h f(1)$$

$$\operatorname{hbut} ho \operatorname{prove} : \operatorname{hout} h \operatorname{hout} h$$

$$\frac{1}{h} \int_{3}^{3+h} f(t) - f(t) dt \leq \frac{1}{h} \int_{3}^{3+h} |f(t) - f(t)| dt$$

$$\leq \frac{1}{h} \int_{3}^{3+h} \varepsilon dt = \frac{1}{h} \cdot \varepsilon \int_{3}^{3+h} dt = \frac{1}{h} \cdot \varepsilon \cdot h = \varepsilon.$$

$$\int_{3}^{3+h} \int_{3}^{3+h} \varepsilon dt = \frac{1}{h} \cdot \varepsilon \int_{3}^{3+h} dt = \frac{1}{h} \cdot \varepsilon \cdot h = \varepsilon.$$

$$\lim_{s \to \infty} Theorem I$$

$$\frac{\operatorname{Prosf} \Pi}{\operatorname{Grave}} :$$

$$\operatorname{Know} \operatorname{Kuat} F' \operatorname{continuous.} \operatorname{Thus} by \operatorname{Theorem} \Pi \operatorname{Kn} \operatorname{function} \\ \operatorname{G}(X) := \int_{X}^{X} F'(G) \, dt \quad ir \quad differentiable \quad and \\ \operatorname{G}(X) := \int_{X}^{Y} F'(G) \, dt \quad ir \quad differentiable \quad and \\ \operatorname{G}(X) := \int_{X}^{Y} (G) \, dt \quad dt \quad of \quad G \right) \\ \operatorname{G}(X) := F'(X) \quad on \quad [a, b] \quad (b_{Y} \operatorname{Theorem} \Pi). \\ \operatorname{Gouridus} \operatorname{H}(X) := F(X) - \operatorname{G}(X). \\ \operatorname{Gouridus} \operatorname{H}(X) := F(X) - \operatorname{G}(X). \\ \operatorname{Hunce}_{1} \operatorname{H} \operatorname{is} a \operatorname{coustant} \operatorname{function}. \\ \operatorname{Henow} \operatorname{Huat} \operatorname{H}(x) = F(a) - \operatorname{G}(a) = F(a) , \quad \operatorname{Hur}_{X} \\ = O(a) \\ \operatorname{Gouridus} X = b . \\ \operatorname{F}(a) \stackrel{\text{Giv}}{=} \operatorname{H}(b) \stackrel{def}{=} \operatorname{F}(b) - \operatorname{G}(b) \stackrel{def}{=} \\ - \operatorname{F}(b) - \int_{X}^{b} F'(f) \, dt \\ \operatorname{Gouridus} X = b . \\ \end{array}$$

=) $\int F'(f) df = F(6) - F(a)$. **四** Th. I

Power series

Def A series of the form $p(x) := \sum_{n=0}^{\infty} a_n x^n$ is n=0

theorem (Radius of convergence)
For every power peries
$$p(x) = \sum_{n=0}^{\infty} a_n x^n$$
 there exists a
 $n=0$
countant r , $0 \le r \le \infty$, called the radius of convergence
 $a_n x^n$ that

• The series courreges (absolutely) for all x with $|x| \leq r$ (meaning that $\sum_{n=0}^{\infty} a_n |x|^n$ courreges, meaning that the requence of partial sums $P_N(x) := \sum_{n=0}^{N} a_n |x|^n$ courreges "in the axial sema" $a_N \to \infty$) A It is unclear what happens for |x| = r

• If |x| < r, the reside even converges uniformly.

The radius of counsequere only depends on the $(a_n)_n$ and can be computed by various formulat: • $r = \frac{1}{L}$ where $L = \lim_{n \to \infty} (|a_n|)^{n/n} \int_{n}^{n} if exists$ • $r = \lim_{n \to \infty} |a_{n+1}|$ Examply:

•
$$p(x) = \sum_{n=0}^{\infty} \frac{1}{\alpha_n} c n$$
 for some countant c

$$v = \lim_{\substack{n \in A \\ 0 \in A}} \left| = \lim_{\substack{n \in A \\ 0 \in A}} \frac{n^{C}}{n^{C}} = \lim_{\substack{n \in A \\ 0 \in A}} \left(\frac{n}{n^{C}} \right)^{C} = 1$$

$$\frac{\operatorname{Carl} C=0}{\operatorname{(both} x=-\Lambda \text{ and } x=+\Lambda)}.$$

• Exponential perios:

$$exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 has $r = \infty$
 $becomen \qquad \left| \frac{\alpha_n}{\alpha_{n+1}} \right| = \frac{1/n!}{n/(n+1)!} = \frac{(n+n)!}{n!} = \alpha + n \rightarrow \infty$

•
$$\sum_{n=0}^{\infty} n! \times n$$
 has $r=0$: $\left| \frac{a_n}{a_{n+1}} \right| = \frac{n!}{(n+n)!} = \frac{1}{n-2} = 0$.

$$\frac{From power period ho Taylor Period}{Governation: Given power period ficks = \sum_{n=0}^{\infty} a_n (x-a)^n ficks = \sum_{n=0}^{\infty} a_n (x-a)^n ficks = \sum_{n=0}^{\infty} a_n (x-a)^n ficks = \sum_{n=0}^{\infty} a_n (x-a) + a_2 (x-a)^2 + a_3 (x-a)^2 + \dots = \sum_{n=0}^{\infty} n \cdot a_n (x-a)^{n-1} ficks = \sum_{n=0}^{\infty} n \cdot a_n (x-a)^{n-1}$$

$$f''(x) = \dots$$

$$f^{(k)}(x) = \sum_{\substack{n=k \\ m=k \\ m=k$$

In particular, we have

$$f^{(k)}(a) = a_k k!$$
 or, shaked otherwise $a_k = \frac{f^{(k)}(a)}{k!}$

Theorem: Let
$$f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n with $r \ge 0$. Then for x with
 $k-a(zr)$ we have
 $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$
Intuition: start will a power prior that converges. Then$$

we have the neat provula that upperson the coeff. in a derivations.

Question Does it work the other way round? That is, given any function (possibly with nice assumptions), can we simply build the price E f (m) (x-a) and "hope" plat it couverges to the function? $= f(x) \frac{277}{2}$

Taylor series

$$\frac{\text{Theorem}}{f \in \mathcal{L}^{n+n}(La_{1}b_{3})}, \quad a, x \in J. \quad \text{Refine}$$

$$\overline{T_{n}(x,a)} := \frac{\neg n}{L_{1}} \quad \frac{f^{(n)}(a)}{k!} \quad (x-a)^{k} \quad \frac{\text{Taylor series}}{k=0}$$

$$R_{n}(x, \alpha) := \int_{\alpha}^{x} \frac{(x-t)^{\alpha}}{n!} f^{(n+\alpha)}(t) dt \quad \text{Remainder term}$$

$$Then \quad f(x) = T_{n}(x, \alpha) + R_{n}(x, \alpha)$$

Proof follows from Fundamental Respects, by induction on n.
Base case
$$n=0$$
: need to prove
 $f(x) = f(a) + \int_{a}^{x} f'(c+) dt \stackrel{2}{=} Fundam.$ Theorem
a
luductive stype normets: (1)ⁿ⁺ⁿ (need)

Consider
$$F(t) = \frac{(x-t)^{n+n}}{(n+n)!} f^{(n+n)}(t)$$

- Integrate and aploit fundomental theorem

$$\frac{\text{The foreun}(Taylor with Lagrange remainder)}{f \in \mathbb{Z}^{n-n}(J), a, x \in J. Then there exists norme
F \in J such that
$$R_n(x, a) = \frac{(x-a)^{n+1}}{(n+a)!} + \binom{(n+a)}{(J)}$$
Free f. Let $J = [a, b].$
Counter two functions $F_i \in \mathbb{Z}^{n-d}([a_i, b]).$ Arowne
Heat $(F(a) = C(a) = 0, and G' \neq 0 \text{ or } [a, b].$ (*)
Now:

$$\frac{F(b) - F(a)}{G(b) - G(a)} = \frac{F(b)}{G(b)} = \frac{F^{1}(J)}{G'(J)} \text{ for rome } J \in [a, b].$$
Assume that F' and G' also radiafy (*). We can ibrak ...
We could obtain

$$\frac{F(b)}{G(b)} = \frac{F(a)}{G^{(n+d)}(J)} \text{ for rome } J \in [a, b]$$
(*)
Now close $F(a) = \frac{F(a)}{G^{(n+d)}(J)}$ for rome $J \in [a, b]$
• for all k in $O \leq k \leq a$ are have by coustraction that
 $f^{(a)}(a) = T_{n}^{(b)}(a)$, so in prohivalar
 $F^{(a)}(a) = 0$, and we have $G^{(b)}(a) = 0$.$$

• For u.e. M we now have $F^{(u,4A)}(x) = f^{(u,4A)}(x), \quad G^{(u,4A)}(x) = (u,A)!$ $g_{\gamma}(4)$ we obtain $F(x) = R_u(x,a) \stackrel{H}{=} G(x) \cdot \frac{F^{(u,4A)}(5)}{G^{(u,4A)}(5)} =$

$$= \frac{(x-\alpha)}{(x+\alpha)!} + \frac{(x+\alpha)}{(x+\alpha)!} = \frac{(x+\alpha)!}{(x+\alpha)!} + \frac{(x+\alpha)!}{(x+\alpha)!} = \frac{(x$$

Theorem
$$f \in \mathcal{C}^{\infty}(J)$$
, $x_{i} \in J$. Define
 $T(x) := \lim_{n \to \infty} T_n(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$.
Then we have $f(x) = T(x)$ if $K_n(x, a) \xrightarrow{n=0}{-70}$.
For example, this is the case if there exist constants
 $a_i \in SO$ such that
 $|f^{(n)}(f)| \leq \alpha \cdot C^n$ $\forall f \in J$, $\forall n \in M$.

Follows directly from the Laprangian remainder.

walle seux at all.
•
$$f(x) = \begin{cases} exp(-1/x^2) & \text{if } x \neq 0 \\ 0 & x = 0 \end{cases}$$

Has the funny property that $\forall u \in \mathbb{N}: f^{(u)}(0)$
Gourishe the Taylor series derived about $a = 0$.

= 0

All torms will be 0, so $\forall u: T_u(x) = 0$, r = 0but of cause f is $u \circ f = 0$, so we get $\forall x \neq 0$, $T_u(x) \neq f(x)$.

5 - Algebra

(ii)
$$\mathcal{F}$$
 is closed under countable unions:
 $A_{n_1} A_{2_1} \cdots G \mathcal{F} \Longrightarrow \bigcup A_i \in \mathcal{F}$
 $i=1$

Important 6-algebras

• Trival 6-algebras: Given X, we can define two (pretty
useless) 6-algebras:
•
$$\mathcal{F}_1 = \{\mathcal{P}_1 X\}$$

• $\mathcal{F}_2 = \mathcal{G}(X) = \{A \subset X\}$

(X, d)
• Consider a metric space, and let G be the collection of
open subsites of X. Then the Bord-6-algebora is defined
as
$$\sigma(G)$$
.

Measures

$$\frac{\text{OLF}}{\text{is a map } \mu: \mathcal{F} \rightarrow \text{Lo}_{1} \infty] \text{ such Hurt}}$$
is a map $\mu: \mathcal{F} \rightarrow \text{Lo}_{1} \infty] \text{ such Hurt}}$
(i) $\mu(\mathcal{B}) = 0$.
(ii) For a countrable collection of dirjoint suborts $(S_{i}^{*})_{i \in \mathbb{N}}$ with $S_{i} \in \mathcal{F}$ are have $\mu(\bigcup S_{i}) = \sum_{i \in \mathbb{N}} \mu(S_{i})$.
(i) measure is a function on \mathcal{F}_{1} not on $X^{!}$.

$$\frac{\text{Examples}}{X = \{x_{i}, x_{i}, x_{i}, \dots, 3\}} \text{ obtime have a requesce}$$
(mc) iem such that $\sum_{i=1}^{2} m_{i}$ is finite.
(Example : mi = $\frac{\Lambda}{i^{2}}$)
Would to define $\mu: \mathcal{F} \rightarrow \mathbb{R}$. Proceed as follows:
 $\mu(\{x_{i}\}) := m_{i} - \frac{\Lambda}{i^{2}}$
Would be define $\mu: \mathcal{F} \rightarrow \mathbb{R}$ or can now deduce the measure (due to countrability) by

$$\mu(A) = \sum_{i \in A} \mu(ix_i) = Z m_i$$

$$x_i \in A$$

Example 2: A fumny measure on
$$\mathbb{R}$$
:
Let F be the Borel-5-Algebra on \mathbb{R} . What is define an
measure host just arriver was to radiual number.
Let $91.921.921...$ be all radiual number.
 \mathbb{R}
Counidu $(m_i)_{i \in \mathbb{N}^3}$ as before: $m_i = \frac{1}{i2}$.
 $p\left(\{\pi_i\}\} = m_i$
 $p\left(\{\pi_i\}\}\} = m_i$
 $p\left(\{\pi_i\}\}\} = \sum_{\substack{i \in \mathbb{E}^n \mid i \\ i \in \mathbb{E}^n \mid i \\ j \in \mathbb{E}^n \mid i \\ j \in \mathbb{E}^n \mid i \\ m_{i} \in \mathbb{E}^n \mid i \\ m$

Define a measure (!)
$$\mu_F$$
 on $(\mathbb{R}, \mathcal{F})$ by setting
 $\mu_F(S) = \inf \left\{ \sum_{j=1}^{\infty} F(b_j) - F(a_j) \middle| S \subset \bigcup_{j=1}^{\infty} Ja_j, b_j \right\} \right\}$

A subsit NE & is called a null set if
$$p(N) = 0$$
.
We say that a property holds all almost enzywhere if
it holds for all xex except for x in a null set N.
(in probability theory, we say "almost surely").

The lebergue incasure ou Rⁿ

Want to construct a measure on R. Want Kint rectangles of the form [a, b, [* [az, b, [* ... * [a, b, [how the "natural volume" given by TT (bi-ai) i=1

$$\begin{bmatrix} R \\ c_1 \end{bmatrix} \begin{bmatrix} c_2 & -\infty & vol(R) &= & c_1 \cdot c_2 \\ \vdots & \vdots & \vdots \\ c_n \end{bmatrix}$$

" lune approximation :

A would be called "measurable" if outer and inne approximation "convergen", Now: generalization of Kir epproach

- · Allow for countrable coverings
- · Replace inner opproximation by ac outs oppose.
- of hie complement:

outer appres. of E 1 A

$$\mu(G) = \mu(E \setminus A) + \mu(A)$$

$$\mu(A) = \mu(G) - \mu(E \setminus A)$$

· herd 6-algebra as underlying structure.

$$\mathcal{D}_{\mathcal{L}}(\mathbf{u}) \xrightarrow{d} \mathbf{u} \xrightarrow{d} \mathbf$$

We cour A by a countroble union of rectangles, then have inf. Observe : l(A) & TR U { \$\oldsymbol{\sigma}\$}.

Need to instrict ourselves to a smaller or-algebra...

Thush by Z all measurable subabs of R4.

 $\frac{12 \times \alpha_{mp} de_{5}}{\lambda} \left(\left\{ x \right\} \right) = 0$ $\lambda \left(\left\{ x \right\} \right) = \infty$

A C R countrable. The
$$\lambda(x) = 0$$
. In particular,
R is measurable and has $\lambda(R) = 0$.
Proof shatch: For $E \ge 0$, define for all $a_i \in A$
Here interval $\sum_{i \in Y_i \in Y_i} \sum_{i \in I_i} \sum_{j \in I_i} \sum_{i \in I_i} \sum_{j \in I_i} R$
 $A \subset \bigcup_{i \in I_i} \sum_{j \in I_i} \lambda(\sum_{i \in I_i} \sum_{j \in I_i})$
 $= \sum_{i \in I_i} \sum_{j \in I_i} \sum_{i \in I_i} \sum_{i$

•

4yp. corrected

Taking the inf. on all convings the shows that l(A) = 0.

Summer: Z & B (up to sets of measure O).

A non-measurable set

Consider [0, 1[. Define au equivalence relations on [0,1[as follows:

 $\frac{\pi}{4}, \frac{\pi}{4} \neq \frac{1}{2} = \frac{\pi}{4}, \frac{\pi}{4} \neq \frac{793}{800}$ would be equivalent

Courido the equivalence classes

$$\begin{bmatrix}
 F \\
 F$$

We pick a representation of each of kee classes, and denote by N the set of all such representations. Want to prove: N is not Lebesgue - measurable.

Lutuitien:

$$k^{irrehbund}$$

 $\sqrt{2/2}$
 $V_{2/2}$
 $V_{2/2}$
 $V_{2/2}$
 $V_{2/2}$
 $V_{2/2}$
 V_{2}
 V_{2}

• if N is meansable, here $q \in N$ is measurable by $G [o_1 \wedge f]$ and $\lambda (N_q) = \lambda (N)$

•
$$[o_1 \cap I] = \bigcup N_q$$

 $q \in [3,4] \cap R$

• $N_q \cap N_p \neq \emptyset = \mathcal{N}_p = N_q$ Consequently, $\cup N_q$ is <u>dirivint</u>. • σ -additivity: $\lambda (E_0, nE) = \lambda (\cup N_q) = \sum_{q \in Eqn J \cap R} \lambda (N_q)$ $\chi (N)$

. Could be that
$$\mathcal{A}(N_q) = 0$$
. But then
 $\sum_{q} \mathcal{A}(N_q) = 0$ G
q
. Could be that $\mathcal{A}(N_q) > 0$. But then
 $\sum_{q} \mathcal{A}(N_q) = \infty$
q

The Lebergue inkpral on R"

Infaition:

Def A function
$$f:(X, F) \rightarrow (Y, G)$$
 between two measurable
spaces is called measurable if pre-images of measurable sets
are measurable:
 $M \in G \subseteq G$ is $\int_{-1}^{-1} (G) \in F$

$$\forall G \in G : f^{-n}(G) \in \mathcal{F}$$

 $=: \{x \in X \mid f(x) \in G\}$

For such a function we can define its Lebesgue integral as

$$\int \phi \, dA := \sum_{i=1}^{n} a_i A(S_i)$$

For a function ft: R" -> E0,00 E ne define its Lebergue integral

$$\int f^{\dagger} d\lambda = \sup \left\{ \int \phi d\lambda \mid \phi \leq f, \phi simple \right\}$$

(might be ∞)

For a general function $f: \mathbb{R}^{n} \to \mathbb{R}$ we split the function into positive and neg. part: $f = f^{+} - f^{-}$ where $f^{+}(x) = \int f(x) = if f(x) \ge 0$ 0 otherwise

Noh: f^{*}, f⁻ on meanwable if f is meanwable.

If both
$$f^*$$
 and f^- subjective $f^* d\lambda < \infty$, $\int f^- d\lambda < \infty$,
Here we call f integrable and define
 $\int f d\lambda = \int f^* d\lambda - \int f^- d\lambda$.

Much war poweful ustion know Riemann integral.

Henren (monohoue countyme):
Countide a sequence of functions
$$f_u: \mathbb{R}^n \rightarrow \mathbb{E}_{2}, \infty\mathbb{E}$$

that is pointwise non-decreasing:
 $\forall x \in \mathbb{R}^n: f_{n+n} \stackrel{(x)}{=} f_u \stackrel{(x)}{=} .$
Assume heat all fu are measurable,
and heat the pointwise limit exists:
 $\forall x: lim f_u(x) = : f(x)$

Then:

Partial distributives on
$$\mathbb{R}^{h}$$

Counider $f: \mathbb{R}^{h} \rightarrow \mathbb{R}$
 $\mathbb{R}^{n} \ni x = \begin{pmatrix} x_{0} \\ \vdots \\ x_{0} \end{pmatrix}$, $f(x) = x_{0}^{n} + x_{0}^{n}$

If all partial derivations exist, then the vector of all
partial derivations is called the gradient:
$$grad(f)(\overline{s}) = \nabla f(\overline{s}) = \begin{pmatrix} \frac{2}{\sigma \times 1} \\ \overline{\sigma \times 1} \\ \vdots \\ \frac{2}{\sigma \times 1} \end{pmatrix} \in \mathbb{R}^{n}$$

 $(\frac{2}{\sigma \times 1} (\overline{s}))$

If
$$f: \mathbb{R}^{n} \to \mathbb{R}^{m}$$
, we decompose f into its m
component functions $f = \begin{pmatrix} f_{n} \\ \vdots \\ fm \end{pmatrix}$. We define the
Jacobian matrix
 $\mathfrak{O}f(x) = \begin{pmatrix} \frac{\partial f_{n}}{\partial x_{n}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial fm}{\partial x_{n}} & \cdots & \frac{\partial fm}{\partial x_{n}} \end{pmatrix} \subset \mathbb{R}^{m \times n}$

I true if all partial derivatives exist at 5, we do not know whether f is continuous at 5!

$$\frac{\text{Grande}:}{f: \mathbb{R}^{\ell} \to \mathbb{R}},$$

$$f(x_{i}\gamma) = \begin{cases} \frac{x_{i}\gamma}{x^{2}+\gamma^{2}} & \text{if } (x_{i}\gamma) \neq (o_{i}o) \\ 0 & \text{if } x = \gamma = 0 \end{cases}$$

For
$$(x_{1}\gamma) \neq (0, 0)$$

grad $f(x_{1}\gamma) = \left(\gamma \cdot \frac{\gamma^{2} - x^{2}}{(x^{2} + \gamma^{2})^{2}} + x \cdot \frac{x^{2} - \gamma^{2}}{(x^{2} + \gamma^{2})^{2}}\right)$

$$qradf(0,0) = 0$$
 because $f(x, \partial) = 0$ by
 $f(0, \gamma) = 0$ by

but fir not continuous at 0.

Total derivative
f:
$$\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$$
, $\overline{s} \in U$.
f is differentiable at \overline{s} if there exists
a know unppring $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$
such that for $h \in \mathbb{R}^{n}$
f $(\overline{s} + h) - f(\overline{s}) = L(h) + r(h)$
with $\lim_{h \to 0} \frac{r(h)}{\|h\|} \rightarrow 0$.
Intaition: f is "locally linear"
Theorem $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ differentiable at \overline{s} .
• Then f is continuous of \overline{s} .
• The linear functional L coincides with the gradient:
 $f(\overline{s} + h) - f(\overline{s}) = \frac{\tilde{z}}{2\pi s} \frac{2f}{2\pi s}(\overline{s}) \cdot h_{\overline{s}} + r(h)$
 $= \langle qrad f(\theta, h, \gamma) + r(h)$

If $f: \mathbb{R}^{n} \to \mathbb{R}^{m}$, it is differentiable if all coordinate functions $f_{n_{1}} \cdots f_{n_{n}}$ are differentiable. Then all partial derivatives crist and $L(h) = (Jacobi matrix) \cdot h$ Thesren: lif all partial derivatives exist and are all continuous, then f is differentiable.

Directional derivatives

Det Assume f is cont. differentiable, $v \in \mathbb{R}^{n}$ with hv h = A. The directional derivative of f at \overline{s} in direction of vis defined as $\frac{f(\overline{s} + \overline{t} \cdot v) - f(\overline{s})}{D_{v} f(\overline{s}) = \lim_{t \to 0} \frac{f(\overline{s} + \overline{t} \cdot v) - f(\overline{s})}{t}$

<u>Theorem</u>: $f: \mathbb{R}^{n} \to \mathbb{R}$ differentiable in $\overline{5}$. Then all the directional derivatives exist, and we can compute them by $\mathcal{O}_{r} f(\overline{5}) = (\operatorname{grad} f)^{\dagger} \cdot v = \sum_{i=1}^{n} v_{i} \cdot \frac{\partial f}{\partial x_{i}} (5)$ $u' = \sum_{i=1}^{n} v_{i} \cdot \frac{\partial f}{\partial x_{i}} (5)$

The largest value of all directional devivatives is attained in direction

$$v = \frac{\text{grad } f(s)}{||qrad } f(s)||$$

Higher order derivatives

Counider $f: \mathbb{R}^{n} \to \mathbb{R}$, assume it is differentiable, so all pertial derivatives $\frac{\partial f}{\partial x_{j}}: \mathbb{R}^{n} \to \mathbb{R}$. If this flue chien is differentiable, we can take its derivative: $\frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right) = \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$

These are called recound order partial drivatives.

 $\underbrace{ \begin{array}{l} \text{In purval, we cannot change the order of derivative:} \\ \frac{2f^2}{2\kappa_i 2\kappa_j} & \pm \frac{2f^2}{2\kappa_j \kappa_i} \\ \text{Example: } f(x_i \kappa) = \frac{x \cdot y}{\kappa^2 + y^2} \\ \text{grad} f(x_i \kappa) = \left(\frac{y^3 (y^2 - \kappa^2)}{(x^2 + y^2)^2} \right) \frac{x y^2 (3\kappa^2 + y^2)}{(x^2 + y^2)^2} \right)$

Have: $\frac{\partial e}{\partial x} \left(\begin{array}{c} 0, y \\ \frac{\partial e}{\partial x} \end{array} \right) = Y$ for all y $\frac{\partial}{\partial y} \left(\begin{array}{c} \frac{\partial e}{\partial x} \\ \frac{\partial e}{\partial x} \end{array} \right) = 1$

•
$$\frac{\partial f}{\partial \gamma}(x,0) = 0$$
 Wall x
 $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial \gamma}\right) = 0$

We say that
$$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$$
 is continuously differentiable,
if all partial derivative $\frac{\partial f}{\partial x_{i}}$ exist and are continuous.
We say that f is twice continuously differentiable if
 f is continuously differentiable and all partial
derivations $\frac{\partial f}{\partial x_{i}}$ are again contributionally differentiable.
Analogously: ke times cout. differentiable
Notation: $\mathcal{C}^{k}(\mathbb{R}^{n}, \mathbb{R}^{m}) = ff:\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \mid k \text{ times cout.}$
 $diff. \tilde{g}$
 $\mathcal{C}^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{m}) = \{f:\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \mid \infty \text{ other cont.}$
 $diff. \tilde{g}$

Theorem (Schwortz) Assume that
$$f$$
 is twice continuously
differentiable. Then we can exchange the order in which are take
partial divivatives:
$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i}$$

Analogourly: le times cout. diff. >> can exchange order of first le partiel duivatives.

$$\underbrace{ \left[\begin{array}{c} Cantion: dimensions \\ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \end{array} \right] }_{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}} first drivative : n partial drive \nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \qquad first drivative : n partial drive th f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n} \qquad second drivative : \\ \overset{2f}{\sigma_{x_{i}}} \\ \end{array}$$

Kinima/maxima

Def
$$f: \mathbb{R}^{n} \to \mathbb{R}$$
 differentiable. If $\forall f(x) = 0$
then are call $x = \frac{critical point.}{}$
 f has a local minimum at x_{0} if has write $E > 0$
ruch that $\forall x \in B_{E}(x_{0}) : f(x_{1}) \geq f(x_{0})$
 $\int \frac{strict}{breat} \frac{breat}{breat} \frac{brea$

f has a global minimum at to if
$$\forall x : f(x) \ge f(x_0)$$

How our we see which hype we have?
When in
$$\mathbb{R}$$
:
 f_{x_0}
 f_{x_0}

Theorem f: Rⁿ -> R, f E C²(Rⁿ). Assume Hunt Ro is
a critical point, i.e.
$$\nabla f(x_0) = 0$$
. Then:
(i) If Ro is a local minimum (maximum), then the theorem
th f (x_0) is positive semi-definite (neg. semi-def.)
(ii) If Hf(x_0) is positive definite (neg. definite), then Ko
is a otrict local min (max). If Hf(x_0) is indefinite,
then Ro is a saddle point.

Matrix/vector derivatives Example: Linear least squares $f:\mathbb{R}^{h} \to \mathbb{R} \qquad \text{input data} \\ f(\omega) = \| y - A w \|^{2} \\ \text{predicted subject} \\ \text{values}$ true output values weight vector (parameters we want to find) how good is prodiction (pa of model with para. W Want to minimize (cw). Ward to book at Vf: R" -> R" Compute product by foot: · Write function explisitly: $f\begin{pmatrix}\omega_{1}\\i\\\omega_{n}\end{pmatrix} = \sum_{j=1}^{n} (\gamma_{j} - \sum_{k=1}^{n} \alpha_{jk}\omega_{k})^{2}$ $\frac{\sigma f}{\sigma \omega_i} = \sum_{i=1}^{\infty} (-\alpha_{ji}) \cdot \frac{1}{2} \left(x_j - \sum_{k=1}^{m} \alpha_{jk} \omega_k \right)$ $(A\omega);$ $-2 \cdot \sum_{j=1}^{n} a_{ji} \cdot (\gamma - A_{N})_{j}$ $\left(A^{t}\left(\gamma-A\omega\right)\right)$

$$\frac{\partial f}{\partial X} = C X ab + C X b a^{t}$$

•
$$f: \mathbb{R}^{u \times u} \rightarrow \mathbb{R}$$

 $f(x) = tr(X) \Rightarrow \frac{\partial f}{\partial x} = I \in \mathbb{R}^{u \times u}$

•
$$f(x) = \frac{1}{\sqrt{x^{+}}} (x \cdot x) = \frac{\partial f}{\partial x} = A$$

 $f(x) = \frac{1}{\sqrt{x^{+}}} (x^{+} A x) = \frac{\partial f}{\partial x} = (A + A 9 x)$

•
$$f(x) = def(x)$$
 Determinant
 $\frac{\partial f}{\partial x} = olet(x) (x^{b})^{-1}$
 $\frac{\partial def}{\partial x} = def(A) \cdot (A^{-1})$
 $\frac{\partial}{\partial a_{sr}}$ rs

$$f: \mathbb{R}^{u \times u} \rightarrow \mathbb{R}^{u \times u} \quad [u \circ ge$$

$$f(A) = A^{-A}, \quad fij := (A^{-A})_{ij}$$

$$\frac{\partial f_{ij}}{\partial a_{ur}} = - (a_{iu})^{-1} (a_{rj})^{-1}$$